Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2i Structured version   Visualization version   GIF version

Theorem rmo2i 3873
 Description: Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2i (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo2i
StepHypRef Expression
1 rexex 3242 . 2 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
2 rmo2.1 . . 3 𝑦𝜑
32rmo2 3872 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
41, 3sylibr 236 1 (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1780  Ⅎwnf 1784  ∀wral 3140  ∃wrex 3141  ∃*wrmo 3143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2177 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-mo 2622  df-ral 3145  df-rex 3146  df-rmo 3148 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator