Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmo2i | Structured version Visualization version GIF version |
Description: Condition implying restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
rmo2i | ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexex 3167 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) | |
2 | rmo2.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | rmo2 3816 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 Ⅎwnf 1787 ∀wral 3063 ∃wrex 3064 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-ral 3068 df-rex 3069 df-rmo 3071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |