MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo3 Structured version   Visualization version   GIF version

Theorem rmo3 3880
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) Avoid ax-13 2367. (Revised by Wolf Lammen, 30-Apr-2023.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo3 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rmo3
StepHypRef Expression
1 df-rmo 3372 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 sban 2076 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑦 / 𝑥]𝑥𝐴 ∧ [𝑦 / 𝑥]𝜑))
3 clelsb1 2856 . . . . . . . . . . 11 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
42, 3bianbi 626 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
54anbi2i 622 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
6 an4 655 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
7 ancom 460 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
87anbi1i 623 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
95, 6, 83bitri 297 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
109imbi1i 349 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦))
11 impexp 450 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
12 impexp 450 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
1310, 11, 123bitri 297 . . . . . 6 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
1413albii 1814 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
15 df-ral 3058 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
16 r19.21v 3175 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
1714, 15, 163bitr2i 299 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
1817albii 1814 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
19 nfv 1910 . . . . 5 𝑦 𝑥𝐴
20 rmo2.1 . . . . 5 𝑦𝜑
2119, 20nfan 1895 . . . 4 𝑦(𝑥𝐴𝜑)
2221mo3 2554 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦))
23 df-ral 3058 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2418, 22, 233bitr4i 303 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
251, 24bitri 275 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wnf 1778  [wsb 2060  wcel 2099  ∃*wmo 2528  wral 3057  ∃*wrmo 3371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clel 2806  df-ral 3058  df-rmo 3372
This theorem is referenced by:  poimirlem25  37112  poimirlem26  37113
  Copyright terms: Public domain W3C validator