Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1f Structured version   Visualization version   GIF version

Theorem reueq1f 3352
 Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1 𝑥𝐴
raleq1f.2 𝑥𝐵
Assertion
Ref Expression
reueq1f (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))

Proof of Theorem reueq1f
StepHypRef Expression
1 raleq1f.1 . . . 4 𝑥𝐴
2 raleq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2968 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2878 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 632 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5eubid 2648 . 2 (𝐴 = 𝐵 → (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑥(𝑥𝐵𝜑)))
7 df-reu 3113 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
8 df-reu 3113 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 317 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃!weu 2628  Ⅎwnfc 2936  ∃!wreu 3108 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-mo 2598  df-eu 2629  df-cleq 2791  df-clel 2870  df-nfc 2938  df-reu 3113 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator