Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reueq1f | Structured version Visualization version GIF version |
Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
raleq1f.1 | ⊢ Ⅎ𝑥𝐴 |
raleq1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
reueq1f | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | raleq1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2920 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | anbi1d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
6 | 3, 5 | eubid 2587 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | df-reu 3072 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
8 | df-reu 3072 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 Ⅎwnfc 2887 ∃!wreu 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 df-cleq 2730 df-clel 2816 df-nfc 2889 df-reu 3072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |