Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmotru | Structured version Visualization version GIF version |
Description: Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by BJ, 23-Sep-2024.) |
Ref | Expression |
---|---|
rmotru | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 ∈ 𝐴 ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . . 4 ⊢ ⊤ | |
2 | 1 | biantru 530 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ⊤)) |
3 | 2 | mobii 2548 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ ⊤)) |
4 | df-rmo 3071 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ⊤ ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ ⊤)) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 ∈ 𝐴 ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊤wtru 1540 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-mo 2540 df-rmo 3071 |
This theorem is referenced by: reutruALT 46152 mosn 46158 |
Copyright terms: Public domain | W3C validator |