Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reutru Structured version   Visualization version   GIF version

Theorem reutru 48539
Description: Two ways of expressing "exactly one" element. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
reutru (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)

Proof of Theorem reutru
StepHypRef Expression
1 tru 1541 . . . 4
21biantru 529 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ⊤))
32eubii 2588 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
4 df-reu 3389 . 2 (∃!𝑥𝐴 ⊤ ↔ ∃!𝑥(𝑥𝐴 ∧ ⊤))
53, 4bitr4i 278 1 (∃!𝑥 𝑥𝐴 ↔ ∃!𝑥𝐴 ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wtru 1538  wcel 2108  ∃!weu 2571  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-mo 2543  df-eu 2572  df-reu 3389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator