Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosn Structured version   Visualization version   GIF version

Theorem mosn 46158
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mosn (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosn
StepHypRef Expression
1 rmosn 4655 . . 3 ∃*𝑥 ∈ {𝐵}⊤
2 rmotru 46150 . . 3 (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤)
31, 2mpbir 230 . 2 ∃*𝑥 𝑥 ∈ {𝐵}
4 eleq2 2827 . . 3 (𝐴 = {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
54mobidv 2549 . 2 (𝐴 = {𝐵} → (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵}))
63, 5mpbiri 257 1 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wtru 1540  wcel 2106  ∃*wmo 2538  ∃*wrmo 3067  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-v 3434  df-sbc 3717  df-dif 3890  df-nul 4257  df-sn 4562
This theorem is referenced by:  mo0  46159  mosssn  46160  mo0sn  46161
  Copyright terms: Public domain W3C validator