Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosn Structured version   Visualization version   GIF version

Theorem mosn 47597
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mosn (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosn
StepHypRef Expression
1 rmosn 4723 . . 3 ∃*𝑥 ∈ {𝐵}⊤
2 rmotru 47589 . . 3 (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤)
31, 2mpbir 230 . 2 ∃*𝑥 𝑥 ∈ {𝐵}
4 eleq2 2821 . . 3 (𝐴 = {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
54mobidv 2542 . 2 (𝐴 = {𝐵} → (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵}))
63, 5mpbiri 258 1 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2105  ∃*wmo 2531  ∃*wrmo 3374  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-v 3475  df-sbc 3778  df-dif 3951  df-nul 4323  df-sn 4629
This theorem is referenced by:  mo0  47598  mosssn  47599  mo0sn  47600
  Copyright terms: Public domain W3C validator