![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version |
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmosn 4744 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
2 | rmotru 48536 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
3 | 1, 2 | mpbir 231 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
4 | eleq2 2833 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
5 | 4 | mobidv 2552 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
6 | 3, 5 | mpbiri 258 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ∃*wmo 2541 ∃*wrmo 3387 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-v 3490 df-sbc 3805 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: mo0 48545 mosssn 48546 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |