| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmosn 4669 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
| 2 | rmotru 48842 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
| 4 | eleq2 2820 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
| 5 | 4 | mobidv 2544 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
| 6 | 3, 5 | mpbiri 258 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∃*wmo 2533 ∃*wrmo 3345 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-v 3438 df-sbc 3737 df-dif 3900 df-nul 4281 df-sn 4574 |
| This theorem is referenced by: mo0 48853 mosssn 48854 mo0sn 48855 f1omo 48932 oppcmndclem 49057 indcthing 49500 discthing 49501 termcbasmo 49523 setcsnterm 49530 idfudiag1 49565 |
| Copyright terms: Public domain | W3C validator |