![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version |
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmosn 4728 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
2 | rmotru 47953 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
4 | eleq2 2818 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
5 | 4 | mobidv 2538 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
6 | 3, 5 | mpbiri 257 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ∃*wmo 2527 ∃*wrmo 3373 {csn 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-v 3475 df-sbc 3779 df-dif 3952 df-nul 4327 df-sn 4633 |
This theorem is referenced by: mo0 47962 mosssn 47963 mo0sn 47964 |
Copyright terms: Public domain | W3C validator |