Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosn Structured version   Visualization version   GIF version

Theorem mosn 47961
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mosn (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosn
StepHypRef Expression
1 rmosn 4728 . . 3 ∃*𝑥 ∈ {𝐵}⊤
2 rmotru 47953 . . 3 (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤)
31, 2mpbir 230 . 2 ∃*𝑥 𝑥 ∈ {𝐵}
4 eleq2 2818 . . 3 (𝐴 = {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
54mobidv 2538 . 2 (𝐴 = {𝐵} → (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵}))
63, 5mpbiri 257 1 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wtru 1534  wcel 2098  ∃*wmo 2527  ∃*wrmo 3373  {csn 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-v 3475  df-sbc 3779  df-dif 3952  df-nul 4327  df-sn 4633
This theorem is referenced by:  mo0  47962  mosssn  47963  mo0sn  47964
  Copyright terms: Public domain W3C validator