Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version |
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmosn 4655 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
2 | rmotru 46150 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
3 | 1, 2 | mpbir 230 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
4 | eleq2 2827 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
5 | 4 | mobidv 2549 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
6 | 3, 5 | mpbiri 257 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ∃*wmo 2538 ∃*wrmo 3067 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-v 3434 df-sbc 3717 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: mo0 46159 mosssn 46160 mo0sn 46161 |
Copyright terms: Public domain | W3C validator |