Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosn Structured version   Visualization version   GIF version

Theorem mosn 48758
Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mosn (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosn
StepHypRef Expression
1 rmosn 4700 . . 3 ∃*𝑥 ∈ {𝐵}⊤
2 rmotru 48749 . . 3 (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤)
31, 2mpbir 231 . 2 ∃*𝑥 𝑥 ∈ {𝐵}
4 eleq2 2824 . . 3 (𝐴 = {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
54mobidv 2549 . 2 (𝐴 = {𝐵} → (∃*𝑥 𝑥𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵}))
63, 5mpbiri 258 1 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109  ∃*wmo 2538  ∃*wrmo 3363  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-v 3466  df-sbc 3771  df-dif 3934  df-nul 4314  df-sn 4607
This theorem is referenced by:  mo0  48759  mosssn  48760  mo0sn  48761  oppcmndclem  48959  indcthing  49313  discthing  49314  termcbasmo  49335  setcsnterm  49342  idfudiag1  49377
  Copyright terms: Public domain W3C validator