| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosn | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosn | ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmosn 4683 | . . 3 ⊢ ∃*𝑥 ∈ {𝐵}⊤ | |
| 2 | rmotru 48788 | . . 3 ⊢ (∃*𝑥 𝑥 ∈ {𝐵} ↔ ∃*𝑥 ∈ {𝐵}⊤) | |
| 3 | 1, 2 | mpbir 231 | . 2 ⊢ ∃*𝑥 𝑥 ∈ {𝐵} |
| 4 | eleq2 2817 | . . 3 ⊢ (𝐴 = {𝐵} → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) | |
| 5 | 4 | mobidv 2542 | . 2 ⊢ (𝐴 = {𝐵} → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑥 𝑥 ∈ {𝐵})) |
| 6 | 3, 5 | mpbiri 258 | 1 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃*wmo 2531 ∃*wrmo 3353 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-v 3449 df-sbc 3754 df-dif 3917 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: mo0 48799 mosssn 48800 mo0sn 48801 f1omo 48878 oppcmndclem 49003 indcthing 49446 discthing 49447 termcbasmo 49469 setcsnterm 49476 idfudiag1 49511 |
| Copyright terms: Public domain | W3C validator |