Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Visualization version   GIF version

Theorem rrpsscn 44978
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn + ⊆ ℂ

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 13022 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
21ssriv 3984 1 + ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3947  cc 11142  +crp 13012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-resscn 11201
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3429  df-v 3473  df-in 3954  df-ss 3964  df-rp 13013
This theorem is referenced by:  stirlinglem8  45471
  Copyright terms: Public domain W3C validator