| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| rrpsscn | ⊢ ℝ+ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn 13024 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3967 | 1 ⊢ ℝ+ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 ℂcc 11132 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-rp 13014 |
| This theorem is referenced by: stirlinglem8 46077 |
| Copyright terms: Public domain | W3C validator |