![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
rrpsscn | ⊢ ℝ+ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12926 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3949 | 1 ⊢ ℝ+ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3911 ℂcc 11050 ℝ+crp 12916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-resscn 11109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-in 3918 df-ss 3928 df-rp 12917 |
This theorem is referenced by: stirlinglem8 44329 |
Copyright terms: Public domain | W3C validator |