Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Visualization version   GIF version

Theorem rrpsscn 45687
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn + ⊆ ℂ

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 12901 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
21ssriv 3933 1 + ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3897  cc 11004  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914  df-rp 12891
This theorem is referenced by:  stirlinglem8  46178
  Copyright terms: Public domain W3C validator