Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Visualization version   GIF version

Theorem rrpsscn 45509
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn + ⊆ ℂ

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 13067 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
21ssriv 4012 1 + ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3976  cc 11182  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-rp 13058
This theorem is referenced by:  stirlinglem8  46002
  Copyright terms: Public domain W3C validator