![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
rrpsscn | ⊢ ℝ+ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 13067 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 4012 | 1 ⊢ ℝ+ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ℂcc 11182 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-rp 13058 |
This theorem is referenced by: stirlinglem8 46002 |
Copyright terms: Public domain | W3C validator |