Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Visualization version   GIF version

Theorem rrpsscn 45608
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn + ⊆ ℂ

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 13046 . 2 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
21ssriv 3986 1 + ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wss 3950  cc 11154  +crp 13035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-ss 3967  df-rp 13036
This theorem is referenced by:  stirlinglem8  46101
  Copyright terms: Public domain W3C validator