Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
rrpsscn | ⊢ ℝ+ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12669 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3921 | 1 ⊢ ℝ+ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ℂcc 10800 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-rp 12660 |
This theorem is referenced by: stirlinglem8 43512 |
Copyright terms: Public domain | W3C validator |