| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrpsscn | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| rrpsscn | ⊢ ℝ+ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn 12901 | . 2 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
| 2 | 1 | ssriv 3933 | 1 ⊢ ℝ+ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ℂcc 11004 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-rp 12891 |
| This theorem is referenced by: stirlinglem8 46178 |
| Copyright terms: Public domain | W3C validator |