![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulc1cncfg | Structured version Visualization version GIF version |
Description: A version of mulc1cncf 24950 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
Ref | Expression |
---|---|
mulc1cncfg.1 | ⊢ Ⅎ𝑥𝐹 |
mulc1cncfg.2 | ⊢ Ⅎ𝑥𝜑 |
mulc1cncfg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
mulc1cncfg.4 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulc1cncfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulc1cncfg.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) | |
3 | 2 | mulc1cncf 24950 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
5 | cncff 24938 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) |
7 | mulc1cncfg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
8 | cncff 24938 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
10 | fcompt 7167 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) | |
11 | 6, 9, 10 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) |
12 | 9 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
13 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | 13, 12 | mulcld 11310 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐵 · (𝐹‘𝑡)) ∈ ℂ) |
15 | mulc1cncfg.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
16 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑡 | |
17 | 15, 16 | nffv 6930 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
18 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
19 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥 · | |
20 | 18, 19, 17 | nfov 7478 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐵 · (𝐹‘𝑡)) |
21 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹‘𝑡))) | |
22 | 17, 20, 21, 2 | fvmptf 7050 | . . . . . 6 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ (𝐵 · (𝐹‘𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
23 | 12, 14, 22 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
24 | 23 | mpteq2dva 5266 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡)))) |
25 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑡𝐵 | |
26 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑡 · | |
27 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑡(𝐹‘𝑥) | |
28 | 25, 26, 27 | nfov 7478 | . . . . 5 ⊢ Ⅎ𝑡(𝐵 · (𝐹‘𝑥)) |
29 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = 𝑥 → (𝐹‘𝑡) = (𝐹‘𝑥)) | |
30 | 29 | oveq2d 7464 | . . . . 5 ⊢ (𝑡 = 𝑥 → (𝐵 · (𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑥))) |
31 | 20, 28, 30 | cbvmpt 5277 | . . . 4 ⊢ (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) |
32 | 24, 31 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
33 | 11, 32 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
34 | 7, 4 | cncfco 24952 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
35 | 33, 34 | eqeltrrd 2845 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 · cmul 11189 –cn→ccncf 24921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-cncf 24923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |