Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulc1cncfg Structured version   Visualization version   GIF version

Theorem mulc1cncfg 41746
Description: A version of mulc1cncf 23440 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
mulc1cncfg.1 𝑥𝐹
mulc1cncfg.2 𝑥𝜑
mulc1cncfg.3 (𝜑𝐹 ∈ (𝐴cn→ℂ))
mulc1cncfg.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulc1cncfg (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem mulc1cncfg
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mulc1cncfg.4 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2 eqid 2818 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))
32mulc1cncf 23440 . . . . . 6 (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
41, 3syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
5 cncff 23428 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
64, 5syl 17 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
7 mulc1cncfg.3 . . . . 5 (𝜑𝐹 ∈ (𝐴cn→ℂ))
8 cncff 23428 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
10 fcompt 6887 . . . 4 (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
116, 9, 10syl2anc 584 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
129ffvelrnda 6843 . . . . . 6 ((𝜑𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
131adantr 481 . . . . . . 7 ((𝜑𝑡𝐴) → 𝐵 ∈ ℂ)
1413, 12mulcld 10649 . . . . . 6 ((𝜑𝑡𝐴) → (𝐵 · (𝐹𝑡)) ∈ ℂ)
15 mulc1cncfg.1 . . . . . . . 8 𝑥𝐹
16 nfcv 2974 . . . . . . . 8 𝑥𝑡
1715, 16nffv 6673 . . . . . . 7 𝑥(𝐹𝑡)
18 nfcv 2974 . . . . . . . 8 𝑥𝐵
19 nfcv 2974 . . . . . . . 8 𝑥 ·
2018, 19, 17nfov 7175 . . . . . . 7 𝑥(𝐵 · (𝐹𝑡))
21 oveq2 7153 . . . . . . 7 (𝑥 = (𝐹𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹𝑡)))
2217, 20, 21, 2fvmptf 6781 . . . . . 6 (((𝐹𝑡) ∈ ℂ ∧ (𝐵 · (𝐹𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2312, 14, 22syl2anc 584 . . . . 5 ((𝜑𝑡𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2423mpteq2dva 5152 . . . 4 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))))
25 nfcv 2974 . . . . . 6 𝑡𝐵
26 nfcv 2974 . . . . . 6 𝑡 ·
27 nfcv 2974 . . . . . 6 𝑡(𝐹𝑥)
2825, 26, 27nfov 7175 . . . . 5 𝑡(𝐵 · (𝐹𝑥))
29 fveq2 6663 . . . . . 6 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
3029oveq2d 7161 . . . . 5 (𝑡 = 𝑥 → (𝐵 · (𝐹𝑡)) = (𝐵 · (𝐹𝑥)))
3120, 28, 30cbvmpt 5158 . . . 4 (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥)))
3224, 31syl6eq 2869 . . 3 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
3311, 32eqtrd 2853 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
347, 4cncfco 23442 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴cn→ℂ))
3533, 34eqeltrrd 2911 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wnf 1775  wcel 2105  wnfc 2958  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  cc 10523   · cmul 10530  cnccncf 23411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-cncf 23413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator