![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulc1cncfg | Structured version Visualization version GIF version |
Description: A version of mulc1cncf 24403 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
Ref | Expression |
---|---|
mulc1cncfg.1 | ⊢ Ⅎ𝑥𝐹 |
mulc1cncfg.2 | ⊢ Ⅎ𝑥𝜑 |
mulc1cncfg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
mulc1cncfg.4 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulc1cncfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulc1cncfg.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | eqid 2733 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) | |
3 | 2 | mulc1cncf 24403 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
5 | cncff 24391 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) |
7 | mulc1cncfg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
8 | cncff 24391 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
10 | fcompt 7126 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) | |
11 | 6, 9, 10 | syl2anc 585 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) |
12 | 9 | ffvelcdmda 7082 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
13 | 1 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | 13, 12 | mulcld 11230 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐵 · (𝐹‘𝑡)) ∈ ℂ) |
15 | mulc1cncfg.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
16 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑡 | |
17 | 15, 16 | nffv 6898 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
18 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
19 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥 · | |
20 | 18, 19, 17 | nfov 7434 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐵 · (𝐹‘𝑡)) |
21 | oveq2 7412 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹‘𝑡))) | |
22 | 17, 20, 21, 2 | fvmptf 7015 | . . . . . 6 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ (𝐵 · (𝐹‘𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
23 | 12, 14, 22 | syl2anc 585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
24 | 23 | mpteq2dva 5247 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡)))) |
25 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑡𝐵 | |
26 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑡 · | |
27 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑡(𝐹‘𝑥) | |
28 | 25, 26, 27 | nfov 7434 | . . . . 5 ⊢ Ⅎ𝑡(𝐵 · (𝐹‘𝑥)) |
29 | fveq2 6888 | . . . . . 6 ⊢ (𝑡 = 𝑥 → (𝐹‘𝑡) = (𝐹‘𝑥)) | |
30 | 29 | oveq2d 7420 | . . . . 5 ⊢ (𝑡 = 𝑥 → (𝐵 · (𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑥))) |
31 | 20, 28, 30 | cbvmpt 5258 | . . . 4 ⊢ (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) |
32 | 24, 31 | eqtrdi 2789 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
33 | 11, 32 | eqtrd 2773 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
34 | 7, 4 | cncfco 24405 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
35 | 33, 34 | eqeltrrd 2835 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ↦ cmpt 5230 ∘ ccom 5679 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 · cmul 11111 –cn→ccncf 24374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-cncf 24376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |