| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulc1cncfg | Structured version Visualization version GIF version | ||
| Description: A version of mulc1cncf 24854 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| Ref | Expression |
|---|---|
| mulc1cncfg.1 | ⊢ Ⅎ𝑥𝐹 |
| mulc1cncfg.2 | ⊢ Ⅎ𝑥𝜑 |
| mulc1cncfg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
| mulc1cncfg.4 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulc1cncfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulc1cncfg.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) | |
| 3 | 2 | mulc1cncf 24854 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 5 | cncff 24842 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) |
| 7 | mulc1cncfg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
| 8 | cncff 24842 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 10 | fcompt 7128 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) | |
| 11 | 6, 9, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) |
| 12 | 9 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
| 13 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 14 | 13, 12 | mulcld 11260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐵 · (𝐹‘𝑡)) ∈ ℂ) |
| 15 | mulc1cncfg.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 16 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑡 | |
| 17 | 15, 16 | nffv 6891 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
| 18 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
| 19 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥 · | |
| 20 | 18, 19, 17 | nfov 7440 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐵 · (𝐹‘𝑡)) |
| 21 | oveq2 7418 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹‘𝑡))) | |
| 22 | 17, 20, 21, 2 | fvmptf 7012 | . . . . . 6 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ (𝐵 · (𝐹‘𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
| 23 | 12, 14, 22 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
| 24 | 23 | mpteq2dva 5219 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡)))) |
| 25 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑡𝐵 | |
| 26 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑡 · | |
| 27 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑡(𝐹‘𝑥) | |
| 28 | 25, 26, 27 | nfov 7440 | . . . . 5 ⊢ Ⅎ𝑡(𝐵 · (𝐹‘𝑥)) |
| 29 | fveq2 6881 | . . . . . 6 ⊢ (𝑡 = 𝑥 → (𝐹‘𝑡) = (𝐹‘𝑥)) | |
| 30 | 29 | oveq2d 7426 | . . . . 5 ⊢ (𝑡 = 𝑥 → (𝐵 · (𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑥))) |
| 31 | 20, 28, 30 | cbvmpt 5228 | . . . 4 ⊢ (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) |
| 32 | 24, 31 | eqtrdi 2787 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
| 33 | 11, 32 | eqtrd 2771 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
| 34 | 7, 4 | cncfco 24856 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 35 | 33, 34 | eqeltrrd 2836 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ↦ cmpt 5206 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 · cmul 11139 –cn→ccncf 24825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-cncf 24827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |