Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulc1cncfg Structured version   Visualization version   GIF version

Theorem mulc1cncfg 42231
Description: A version of mulc1cncf 23510 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
mulc1cncfg.1 𝑥𝐹
mulc1cncfg.2 𝑥𝜑
mulc1cncfg.3 (𝜑𝐹 ∈ (𝐴cn→ℂ))
mulc1cncfg.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulc1cncfg (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem mulc1cncfg
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mulc1cncfg.4 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2 eqid 2798 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))
32mulc1cncf 23510 . . . . . 6 (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
41, 3syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
5 cncff 23498 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
64, 5syl 17 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
7 mulc1cncfg.3 . . . . 5 (𝜑𝐹 ∈ (𝐴cn→ℂ))
8 cncff 23498 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
10 fcompt 6872 . . . 4 (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
116, 9, 10syl2anc 587 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
129ffvelrnda 6828 . . . . . 6 ((𝜑𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
131adantr 484 . . . . . . 7 ((𝜑𝑡𝐴) → 𝐵 ∈ ℂ)
1413, 12mulcld 10650 . . . . . 6 ((𝜑𝑡𝐴) → (𝐵 · (𝐹𝑡)) ∈ ℂ)
15 mulc1cncfg.1 . . . . . . . 8 𝑥𝐹
16 nfcv 2955 . . . . . . . 8 𝑥𝑡
1715, 16nffv 6655 . . . . . . 7 𝑥(𝐹𝑡)
18 nfcv 2955 . . . . . . . 8 𝑥𝐵
19 nfcv 2955 . . . . . . . 8 𝑥 ·
2018, 19, 17nfov 7165 . . . . . . 7 𝑥(𝐵 · (𝐹𝑡))
21 oveq2 7143 . . . . . . 7 (𝑥 = (𝐹𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹𝑡)))
2217, 20, 21, 2fvmptf 6766 . . . . . 6 (((𝐹𝑡) ∈ ℂ ∧ (𝐵 · (𝐹𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2312, 14, 22syl2anc 587 . . . . 5 ((𝜑𝑡𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2423mpteq2dva 5125 . . . 4 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))))
25 nfcv 2955 . . . . . 6 𝑡𝐵
26 nfcv 2955 . . . . . 6 𝑡 ·
27 nfcv 2955 . . . . . 6 𝑡(𝐹𝑥)
2825, 26, 27nfov 7165 . . . . 5 𝑡(𝐵 · (𝐹𝑥))
29 fveq2 6645 . . . . . 6 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
3029oveq2d 7151 . . . . 5 (𝑡 = 𝑥 → (𝐵 · (𝐹𝑡)) = (𝐵 · (𝐹𝑥)))
3120, 28, 30cbvmpt 5131 . . . 4 (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥)))
3224, 31eqtrdi 2849 . . 3 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
3311, 32eqtrd 2833 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
347, 4cncfco 23512 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴cn→ℂ))
3533, 34eqeltrrd 2891 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  cmpt 5110  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  cc 10524   · cmul 10531  cnccncf 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-cncf 23483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator