Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulc1cncfg Structured version   Visualization version   GIF version

Theorem mulc1cncfg 42587
Description: A version of mulc1cncf 23596 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
mulc1cncfg.1 𝑥𝐹
mulc1cncfg.2 𝑥𝜑
mulc1cncfg.3 (𝜑𝐹 ∈ (𝐴cn→ℂ))
mulc1cncfg.4 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulc1cncfg (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem mulc1cncfg
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mulc1cncfg.4 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2 eqid 2759 . . . . . . 7 (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))
32mulc1cncf 23596 . . . . . 6 (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
41, 3syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ))
5 cncff 23584 . . . . 5 ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
64, 5syl 17 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ)
7 mulc1cncfg.3 . . . . 5 (𝜑𝐹 ∈ (𝐴cn→ℂ))
8 cncff 23584 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
10 fcompt 6884 . . . 4 (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
116, 9, 10syl2anc 588 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))))
129ffvelrnda 6840 . . . . . 6 ((𝜑𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
131adantr 485 . . . . . . 7 ((𝜑𝑡𝐴) → 𝐵 ∈ ℂ)
1413, 12mulcld 10689 . . . . . 6 ((𝜑𝑡𝐴) → (𝐵 · (𝐹𝑡)) ∈ ℂ)
15 mulc1cncfg.1 . . . . . . . 8 𝑥𝐹
16 nfcv 2920 . . . . . . . 8 𝑥𝑡
1715, 16nffv 6666 . . . . . . 7 𝑥(𝐹𝑡)
18 nfcv 2920 . . . . . . . 8 𝑥𝐵
19 nfcv 2920 . . . . . . . 8 𝑥 ·
2018, 19, 17nfov 7178 . . . . . . 7 𝑥(𝐵 · (𝐹𝑡))
21 oveq2 7156 . . . . . . 7 (𝑥 = (𝐹𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹𝑡)))
2217, 20, 21, 2fvmptf 6778 . . . . . 6 (((𝐹𝑡) ∈ ℂ ∧ (𝐵 · (𝐹𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2312, 14, 22syl2anc 588 . . . . 5 ((𝜑𝑡𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡)) = (𝐵 · (𝐹𝑡)))
2423mpteq2dva 5125 . . . 4 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))))
25 nfcv 2920 . . . . . 6 𝑡𝐵
26 nfcv 2920 . . . . . 6 𝑡 ·
27 nfcv 2920 . . . . . 6 𝑡(𝐹𝑥)
2825, 26, 27nfov 7178 . . . . 5 𝑡(𝐵 · (𝐹𝑥))
29 fveq2 6656 . . . . . 6 (𝑡 = 𝑥 → (𝐹𝑡) = (𝐹𝑥))
3029oveq2d 7164 . . . . 5 (𝑡 = 𝑥 → (𝐵 · (𝐹𝑡)) = (𝐵 · (𝐹𝑥)))
3120, 28, 30cbvmpt 5131 . . . 4 (𝑡𝐴 ↦ (𝐵 · (𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥)))
3224, 31eqtrdi 2810 . . 3 (𝜑 → (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹𝑡))) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
3311, 32eqtrd 2794 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))))
347, 4cncfco 23598 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴cn→ℂ))
3533, 34eqeltrrd 2854 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wnf 1786  wcel 2112  wnfc 2900  cmpt 5110  ccom 5526  wf 6329  cfv 6333  (class class class)co 7148  cc 10563   · cmul 10570  cnccncf 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-er 8297  df-map 8416  df-en 8526  df-dom 8527  df-sdom 8528  df-sup 8929  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-n0 11925  df-z 12011  df-uz 12273  df-rp 12421  df-seq 13409  df-exp 13470  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-cncf 23569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator