Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulc1cncfg | Structured version Visualization version GIF version |
Description: A version of mulc1cncf 23596 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
Ref | Expression |
---|---|
mulc1cncfg.1 | ⊢ Ⅎ𝑥𝐹 |
mulc1cncfg.2 | ⊢ Ⅎ𝑥𝜑 |
mulc1cncfg.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
mulc1cncfg.4 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulc1cncfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulc1cncfg.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | eqid 2759 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) | |
3 | 2 | mulc1cncf 23596 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ)) |
5 | cncff 23584 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ) |
7 | mulc1cncfg.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
8 | cncff 23584 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
10 | fcompt 6884 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) | |
11 | 6, 9, 10 | syl2anc 588 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)))) |
12 | 9 | ffvelrnda 6840 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
13 | 1 | adantr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | 13, 12 | mulcld 10689 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐵 · (𝐹‘𝑡)) ∈ ℂ) |
15 | mulc1cncfg.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
16 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑡 | |
17 | 15, 16 | nffv 6666 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
18 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
19 | nfcv 2920 | . . . . . . . 8 ⊢ Ⅎ𝑥 · | |
20 | 18, 19, 17 | nfov 7178 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐵 · (𝐹‘𝑡)) |
21 | oveq2 7156 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝑡) → (𝐵 · 𝑥) = (𝐵 · (𝐹‘𝑡))) | |
22 | 17, 20, 21, 2 | fvmptf 6778 | . . . . . 6 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ (𝐵 · (𝐹‘𝑡)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
23 | 12, 14, 22 | syl2anc 588 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑡))) |
24 | 23 | mpteq2dva 5125 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡)))) |
25 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑡𝐵 | |
26 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑡 · | |
27 | nfcv 2920 | . . . . . 6 ⊢ Ⅎ𝑡(𝐹‘𝑥) | |
28 | 25, 26, 27 | nfov 7178 | . . . . 5 ⊢ Ⅎ𝑡(𝐵 · (𝐹‘𝑥)) |
29 | fveq2 6656 | . . . . . 6 ⊢ (𝑡 = 𝑥 → (𝐹‘𝑡) = (𝐹‘𝑥)) | |
30 | 29 | oveq2d 7164 | . . . . 5 ⊢ (𝑡 = 𝑥 → (𝐵 · (𝐹‘𝑡)) = (𝐵 · (𝐹‘𝑥))) |
31 | 20, 28, 30 | cbvmpt 5131 | . . . 4 ⊢ (𝑡 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) |
32 | 24, 31 | eqtrdi 2810 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥))‘(𝐹‘𝑡))) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
33 | 11, 32 | eqtrd 2794 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥)))) |
34 | 7, 4 | cncfco 23598 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝐵 · 𝑥)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
35 | 33, 34 | eqeltrrd 2854 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · (𝐹‘𝑥))) ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 ↦ cmpt 5110 ∘ ccom 5526 ⟶wf 6329 ‘cfv 6333 (class class class)co 7148 ℂcc 10563 · cmul 10570 –cn→ccncf 23567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-map 8416 df-en 8526 df-dom 8527 df-sdom 8528 df-sup 8929 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-n0 11925 df-z 12011 df-uz 12273 df-rp 12421 df-seq 13409 df-exp 13470 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-cncf 23569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |