Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssriv | Structured version Visualization version GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3886 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1807 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Copyright terms: Public domain | W3C validator |