Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem8 Structured version   Visualization version   GIF version

Theorem stirlinglem8 40959
Description: If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem8.1 𝑛𝜑
stirlinglem8.2 𝑛𝐴
stirlinglem8.3 𝑛𝐷
stirlinglem8.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem8.5 (𝜑𝐴:ℕ⟶ℝ+)
stirlinglem8.6 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem8.7 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
stirlinglem8.8 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
stirlinglem8.9 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
stirlinglem8.10 (𝜑𝐶 ∈ ℝ+)
stirlinglem8.11 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem8 (𝜑𝐹 ⇝ (𝐶↑2))

Proof of Theorem stirlinglem8
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem8.1 . . 3 𝑛𝜑
2 stirlinglem8.7 . . . 4 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
3 nfmpt1 4908 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
42, 3nfcxfr 2905 . . 3 𝑛𝐿
5 stirlinglem8.8 . . . 4 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6 nfmpt1 4908 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
75, 6nfcxfr 2905 . . 3 𝑛𝑀
8 stirlinglem8.6 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
9 nfmpt1 4908 . . . 4 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
108, 9nfcxfr 2905 . . 3 𝑛𝐹
11 nnuz 11928 . . 3 ℕ = (ℤ‘1)
12 1zzd 11660 . . 3 (𝜑 → 1 ∈ ℤ)
13 stirlinglem8.2 . . . 4 𝑛𝐴
14 stirlinglem8.5 . . . . 5 (𝜑𝐴:ℕ⟶ℝ+)
15 rrpsscn 40482 . . . . 5 + ⊆ ℂ
16 fss 6238 . . . . 5 ((𝐴:ℕ⟶ℝ+ ∧ ℝ+ ⊆ ℂ) → 𝐴:ℕ⟶ℂ)
1714, 15, 16sylancl 580 . . . 4 (𝜑𝐴:ℕ⟶ℂ)
18 stirlinglem8.11 . . . 4 (𝜑𝐴𝐶)
19 4nn0 11563 . . . . 5 4 ∈ ℕ0
2019a1i 11 . . . 4 (𝜑 → 4 ∈ ℕ0)
21 nnex 11285 . . . . . . 7 ℕ ∈ V
2221mptex 6683 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) ∈ V
232, 22eqeltri 2840 . . . . 5 𝐿 ∈ V
2423a1i 11 . . . 4 (𝜑𝐿 ∈ V)
25 simpr 477 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2614ffvelrnda 6553 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ+)
2726rpcnd 12077 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
2819a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℕ0)
2927, 28expcld 13220 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℂ)
302fvmpt2 6484 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℂ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
3125, 29, 30syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
321, 13, 4, 11, 12, 17, 18, 20, 24, 31climexp 40499 . . 3 (𝜑𝐿 ⇝ (𝐶↑4))
3321mptex 6683 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2))) ∈ V
348, 33eqeltri 2840 . . . 4 𝐹 ∈ V
3534a1i 11 . . 3 (𝜑𝐹 ∈ V)
36 stirlinglem8.3 . . . 4 𝑛𝐷
3717adantr 472 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶ℂ)
38 2nn 11349 . . . . . . . . 9 2 ∈ ℕ
3938a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℕ)
40 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
4139, 40nnmulcld 11329 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
4241adantl 473 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
4337, 42ffvelrnd 6554 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℂ)
44 stirlinglem8.4 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
451, 43, 44fmptdf 6581 . . . 4 (𝜑𝐷:ℕ⟶ℂ)
46 nfmpt1 4908 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ (2 · 𝑛))
47 fex 6686 . . . . . 6 ((𝐴:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐴 ∈ V)
4817, 21, 47sylancl 580 . . . . 5 (𝜑𝐴 ∈ V)
49 1nn 11291 . . . . . . 7 1 ∈ ℕ
50 2cnd 11354 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
51 1cnd 10292 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
5250, 51mulcld 10318 . . . . . . 7 (𝜑 → (2 · 1) ∈ ℂ)
53 oveq2 6854 . . . . . . . 8 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
54 eqid 2765 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑛 ∈ ℕ ↦ (2 · 𝑛))
5553, 54fvmptg 6473 . . . . . . 7 ((1 ∈ ℕ ∧ (2 · 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5649, 52, 55sylancr 581 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5738a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5849a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
5957, 58nnmulcld 11329 . . . . . 6 (𝜑 → (2 · 1) ∈ ℕ)
6056, 59eqeltrd 2844 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) ∈ ℕ)
61 1red 10298 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℝ)
6239nnred 11295 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℝ)
6341nnred 11295 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
6439nnge1d 11324 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ≤ 2)
6561, 62, 63, 64leadd2dd 10900 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≤ ((2 · 𝑛) + 2))
6654fvmpt2 6484 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6741, 66mpdan 678 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6867oveq1d 6861 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) = ((2 · 𝑛) + 1))
69 oveq2 6854 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
7069cbvmptv 4911 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘))
7170a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘)))
72 simpr 477 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
7372oveq2d 6862 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → (2 · 𝑘) = (2 · (𝑛 + 1)))
74 peano2nn 11292 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7539, 74nnmulcld 11329 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℕ)
7671, 73, 74, 75fvmptd 6481 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = (2 · (𝑛 + 1)))
77 2cnd 11354 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℂ)
78 nncn 11287 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
79 1cnd 10292 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8077, 78, 79adddid 10322 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8177mulid1d 10315 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 1) = 2)
8281oveq2d 6862 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2))
8376, 80, 823eqtrd 2803 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = ((2 · 𝑛) + 2))
8465, 68, 833brtr4d 4843 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))
8541nnzd 11733 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℤ)
8667, 85eqeltrd 2844 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) ∈ ℤ)
8786peano2zd 11737 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ)
8875nnzd 11733 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℤ)
8976, 88eqeltrd 2844 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ)
90 eluz 11905 . . . . . . . 8 (((((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ ∧ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ) → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9187, 89, 90syl2anc 579 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9284, 91mpbird 248 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9392adantl 473 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9421mptex 6683 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) ∈ V
9544, 94eqeltri 2840 . . . . . 6 𝐷 ∈ V
9695a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
9744fvmpt2 6484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9825, 43, 97syl2anc 579 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9967adantl 473 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
10099eqcomd 2771 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) = ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))
101100fveq2d 6383 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
10298, 101eqtrd 2799 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
1031, 13, 36, 46, 11, 12, 48, 27, 18, 60, 93, 96, 102climsuse 40502 . . . 4 (𝜑𝐷𝐶)
104 2nn0 11561 . . . . 5 2 ∈ ℕ0
105104a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ0)
10621mptex 6683 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) ∈ V
1075, 106eqeltri 2840 . . . . 5 𝑀 ∈ V
108107a1i 11 . . . 4 (𝜑𝑀 ∈ V)
109 stirlinglem8.9 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
110109rpcnd 12077 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℂ)
111110sqcld 13218 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℂ)
1125fvmpt2 6484 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐷𝑛)↑2) ∈ ℂ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
11325, 111, 112syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
1141, 36, 7, 11, 12, 45, 103, 105, 108, 113climexp 40499 . . 3 (𝜑𝑀 ⇝ (𝐶↑2))
115 stirlinglem8.10 . . . . 5 (𝜑𝐶 ∈ ℝ+)
116115rpcnd 12077 . . . 4 (𝜑𝐶 ∈ ℂ)
117115rpne0d 12080 . . . 4 (𝜑𝐶 ≠ 0)
118 2z 11661 . . . . 5 2 ∈ ℤ
119118a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
120116, 117, 119expne0d 13226 . . 3 (𝜑 → (𝐶↑2) ≠ 0)
1211, 29, 2fmptdf 6581 . . . 4 (𝜑𝐿:ℕ⟶ℂ)
122121ffvelrnda 6553 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) ∈ ℂ)
123113, 111eqeltrd 2844 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
12498oveq1d 6861 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) = ((𝐴‘(2 · 𝑛))↑2))
125113, 124eqtrd 2799 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐴‘(2 · 𝑛))↑2))
12698, 109eqeltrrd 2845 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
127118a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
128126, 127rpexpcld 13244 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴‘(2 · 𝑛))↑2) ∈ ℝ+)
129125, 128eqeltrd 2844 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℝ+)
130129rpne0d 12080 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ≠ 0)
131130neneqd 2942 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) = 0)
132 0cn 10289 . . . . . 6 0 ∈ ℂ
133 elsn2g 4370 . . . . . 6 (0 ∈ ℂ → ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0))
134132, 133ax-mp 5 . . . . 5 ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0)
135131, 134sylnibr 320 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) ∈ {0})
136123, 135eldifd 3745 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ (ℂ ∖ {0}))
13728nn0zd 11732 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℤ)
13826, 137rpexpcld 13244 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℝ+)
139109, 127rpexpcld 13244 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℝ+)
140138, 139rpdivcld 12092 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+)
1418fvmpt2 6484 . . . . 5 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
14225, 140, 141syl2anc 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
1432fvmpt2 6484 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℝ+) → (𝐿𝑛) = ((𝐴𝑛)↑4))
14425, 138, 143syl2anc 579 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
145144, 113oveq12d 6864 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐿𝑛) / (𝑀𝑛)) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
146142, 145eqtr4d 2802 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐿𝑛) / (𝑀𝑛)))
1471, 4, 7, 10, 11, 12, 32, 35, 114, 120, 122, 136, 146climdivf 40506 . 2 (𝜑𝐹 ⇝ ((𝐶↑4) / (𝐶↑2)))
148 2cn 11351 . . . . . 6 2 ∈ ℂ
149 2p2e4 11418 . . . . . 6 (2 + 2) = 4
150148, 148, 149mvlladdi 10557 . . . . 5 2 = (4 − 2)
151150a1i 11 . . . 4 (𝜑 → 2 = (4 − 2))
152151oveq2d 6862 . . 3 (𝜑 → (𝐶↑2) = (𝐶↑(4 − 2)))
15320nn0zd 11732 . . . 4 (𝜑 → 4 ∈ ℤ)
154116, 117, 119, 153expsubd 13231 . . 3 (𝜑 → (𝐶↑(4 − 2)) = ((𝐶↑4) / (𝐶↑2)))
155152, 154eqtrd 2799 . 2 (𝜑 → (𝐶↑2) = ((𝐶↑4) / (𝐶↑2)))
156147, 155breqtrrd 4839 1 (𝜑𝐹 ⇝ (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wnf 1878  wcel 2155  wnfc 2894  Vcvv 3350  wss 3734  {csn 4336   class class class wbr 4811  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6846  cc 10191  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  cle 10333  cmin 10524   / cdiv 10942  cn 11278  2c2 11331  4c4 11333  0cn0 11542  cz 11628  cuz 11891  +crp 12033  cexp 13072  cli 14514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12389  df-fz 12539  df-fzo 12679  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cn 21325  df-cnp 21326  df-tx 21659  df-hmeo 21852  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974
This theorem is referenced by:  stirlinglem15  40966
  Copyright terms: Public domain W3C validator