Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem8 Structured version   Visualization version   GIF version

Theorem stirlinglem8 43622
Description: If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem8.1 𝑛𝜑
stirlinglem8.2 𝑛𝐴
stirlinglem8.3 𝑛𝐷
stirlinglem8.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem8.5 (𝜑𝐴:ℕ⟶ℝ+)
stirlinglem8.6 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem8.7 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
stirlinglem8.8 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
stirlinglem8.9 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
stirlinglem8.10 (𝜑𝐶 ∈ ℝ+)
stirlinglem8.11 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem8 (𝜑𝐹 ⇝ (𝐶↑2))

Proof of Theorem stirlinglem8
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem8.1 . . 3 𝑛𝜑
2 stirlinglem8.7 . . . 4 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
3 nfmpt1 5182 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
42, 3nfcxfr 2905 . . 3 𝑛𝐿
5 stirlinglem8.8 . . . 4 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6 nfmpt1 5182 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
75, 6nfcxfr 2905 . . 3 𝑛𝑀
8 stirlinglem8.6 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
9 nfmpt1 5182 . . . 4 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
108, 9nfcxfr 2905 . . 3 𝑛𝐹
11 nnuz 12621 . . 3 ℕ = (ℤ‘1)
12 1zzd 12351 . . 3 (𝜑 → 1 ∈ ℤ)
13 stirlinglem8.2 . . . 4 𝑛𝐴
14 stirlinglem8.5 . . . . 5 (𝜑𝐴:ℕ⟶ℝ+)
15 rrpsscn 43129 . . . . 5 + ⊆ ℂ
16 fss 6617 . . . . 5 ((𝐴:ℕ⟶ℝ+ ∧ ℝ+ ⊆ ℂ) → 𝐴:ℕ⟶ℂ)
1714, 15, 16sylancl 586 . . . 4 (𝜑𝐴:ℕ⟶ℂ)
18 stirlinglem8.11 . . . 4 (𝜑𝐴𝐶)
19 4nn0 12252 . . . . 5 4 ∈ ℕ0
2019a1i 11 . . . 4 (𝜑 → 4 ∈ ℕ0)
21 nnex 11979 . . . . . . 7 ℕ ∈ V
2221mptex 7099 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) ∈ V
232, 22eqeltri 2835 . . . . 5 𝐿 ∈ V
2423a1i 11 . . . 4 (𝜑𝐿 ∈ V)
25 simpr 485 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2614ffvelrnda 6961 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ+)
2726rpcnd 12774 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
2819a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℕ0)
2927, 28expcld 13864 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℂ)
302fvmpt2 6886 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℂ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
3125, 29, 30syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
321, 13, 4, 11, 12, 17, 18, 20, 24, 31climexp 43146 . . 3 (𝜑𝐿 ⇝ (𝐶↑4))
3321mptex 7099 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2))) ∈ V
348, 33eqeltri 2835 . . . 4 𝐹 ∈ V
3534a1i 11 . . 3 (𝜑𝐹 ∈ V)
36 stirlinglem8.3 . . . 4 𝑛𝐷
3717adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶ℂ)
38 2nn 12046 . . . . . . . . 9 2 ∈ ℕ
3938a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℕ)
40 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
4139, 40nnmulcld 12026 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
4241adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
4337, 42ffvelrnd 6962 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℂ)
44 stirlinglem8.4 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
451, 43, 44fmptdf 6991 . . . 4 (𝜑𝐷:ℕ⟶ℂ)
46 nfmpt1 5182 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ (2 · 𝑛))
47 fex 7102 . . . . . 6 ((𝐴:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐴 ∈ V)
4817, 21, 47sylancl 586 . . . . 5 (𝜑𝐴 ∈ V)
49 1nn 11984 . . . . . . 7 1 ∈ ℕ
50 2cnd 12051 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
51 1cnd 10970 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
5250, 51mulcld 10995 . . . . . . 7 (𝜑 → (2 · 1) ∈ ℂ)
53 oveq2 7283 . . . . . . . 8 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
54 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑛 ∈ ℕ ↦ (2 · 𝑛))
5553, 54fvmptg 6873 . . . . . . 7 ((1 ∈ ℕ ∧ (2 · 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5649, 52, 55sylancr 587 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5738a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5849a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
5957, 58nnmulcld 12026 . . . . . 6 (𝜑 → (2 · 1) ∈ ℕ)
6056, 59eqeltrd 2839 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) ∈ ℕ)
61 1red 10976 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℝ)
6239nnred 11988 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℝ)
6341nnred 11988 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
6439nnge1d 12021 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ≤ 2)
6561, 62, 63, 64leadd2dd 11590 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≤ ((2 · 𝑛) + 2))
6654fvmpt2 6886 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6741, 66mpdan 684 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6867oveq1d 7290 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) = ((2 · 𝑛) + 1))
69 oveq2 7283 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
7069cbvmptv 5187 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘))
7170a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘)))
72 simpr 485 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
7372oveq2d 7291 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → (2 · 𝑘) = (2 · (𝑛 + 1)))
74 peano2nn 11985 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7539, 74nnmulcld 12026 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℕ)
7671, 73, 74, 75fvmptd 6882 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = (2 · (𝑛 + 1)))
77 2cnd 12051 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℂ)
78 nncn 11981 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
79 1cnd 10970 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8077, 78, 79adddid 10999 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8177mulid1d 10992 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 1) = 2)
8281oveq2d 7291 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2))
8376, 80, 823eqtrd 2782 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = ((2 · 𝑛) + 2))
8465, 68, 833brtr4d 5106 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))
8541nnzd 12425 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℤ)
8667, 85eqeltrd 2839 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) ∈ ℤ)
8786peano2zd 12429 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ)
8875nnzd 12425 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℤ)
8976, 88eqeltrd 2839 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ)
90 eluz 12596 . . . . . . . 8 (((((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ ∧ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ) → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9187, 89, 90syl2anc 584 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9284, 91mpbird 256 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9392adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9421mptex 7099 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) ∈ V
9544, 94eqeltri 2835 . . . . . 6 𝐷 ∈ V
9695a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
9744fvmpt2 6886 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9825, 43, 97syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9967adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
10099eqcomd 2744 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) = ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))
101100fveq2d 6778 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
10298, 101eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
1031, 13, 36, 46, 11, 12, 48, 27, 18, 60, 93, 96, 102climsuse 43149 . . . 4 (𝜑𝐷𝐶)
104 2nn0 12250 . . . . 5 2 ∈ ℕ0
105104a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ0)
10621mptex 7099 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) ∈ V
1075, 106eqeltri 2835 . . . . 5 𝑀 ∈ V
108107a1i 11 . . . 4 (𝜑𝑀 ∈ V)
109 stirlinglem8.9 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
110109rpcnd 12774 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℂ)
111110sqcld 13862 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℂ)
1125fvmpt2 6886 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐷𝑛)↑2) ∈ ℂ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
11325, 111, 112syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
1141, 36, 7, 11, 12, 45, 103, 105, 108, 113climexp 43146 . . 3 (𝜑𝑀 ⇝ (𝐶↑2))
115 stirlinglem8.10 . . . . 5 (𝜑𝐶 ∈ ℝ+)
116115rpcnd 12774 . . . 4 (𝜑𝐶 ∈ ℂ)
117115rpne0d 12777 . . . 4 (𝜑𝐶 ≠ 0)
118 2z 12352 . . . . 5 2 ∈ ℤ
119118a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
120116, 117, 119expne0d 13870 . . 3 (𝜑 → (𝐶↑2) ≠ 0)
1211, 29, 2fmptdf 6991 . . . 4 (𝜑𝐿:ℕ⟶ℂ)
122121ffvelrnda 6961 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) ∈ ℂ)
123113, 111eqeltrd 2839 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
12498oveq1d 7290 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) = ((𝐴‘(2 · 𝑛))↑2))
125113, 124eqtrd 2778 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐴‘(2 · 𝑛))↑2))
12698, 109eqeltrrd 2840 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
127118a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
128126, 127rpexpcld 13962 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴‘(2 · 𝑛))↑2) ∈ ℝ+)
129125, 128eqeltrd 2839 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℝ+)
130129rpne0d 12777 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ≠ 0)
131130neneqd 2948 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) = 0)
132 0cn 10967 . . . . . 6 0 ∈ ℂ
133 elsn2g 4599 . . . . . 6 (0 ∈ ℂ → ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0))
134132, 133ax-mp 5 . . . . 5 ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0)
135131, 134sylnibr 329 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) ∈ {0})
136123, 135eldifd 3898 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ (ℂ ∖ {0}))
13728nn0zd 12424 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℤ)
13826, 137rpexpcld 13962 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℝ+)
139109, 127rpexpcld 13962 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℝ+)
140138, 139rpdivcld 12789 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+)
1418fvmpt2 6886 . . . . 5 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
14225, 140, 141syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
1432fvmpt2 6886 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℝ+) → (𝐿𝑛) = ((𝐴𝑛)↑4))
14425, 138, 143syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
145144, 113oveq12d 7293 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐿𝑛) / (𝑀𝑛)) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
146142, 145eqtr4d 2781 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐿𝑛) / (𝑀𝑛)))
1471, 4, 7, 10, 11, 12, 32, 35, 114, 120, 122, 136, 146climdivf 43153 . 2 (𝜑𝐹 ⇝ ((𝐶↑4) / (𝐶↑2)))
148 2cn 12048 . . . . . 6 2 ∈ ℂ
149 2p2e4 12108 . . . . . 6 (2 + 2) = 4
150148, 148, 149mvlladdi 11239 . . . . 5 2 = (4 − 2)
151150a1i 11 . . . 4 (𝜑 → 2 = (4 − 2))
152151oveq2d 7291 . . 3 (𝜑 → (𝐶↑2) = (𝐶↑(4 − 2)))
15320nn0zd 12424 . . . 4 (𝜑 → 4 ∈ ℤ)
154116, 117, 119, 153expsubd 13875 . . 3 (𝜑 → (𝐶↑(4 − 2)) = ((𝐶↑4) / (𝐶↑2)))
155152, 154eqtrd 2778 . 2 (𝜑 → (𝐶↑2) = ((𝐶↑4) / (𝐶↑2)))
156147, 155breqtrrd 5102 1 (𝜑𝐹 ⇝ (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  Vcvv 3432  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  4c4 12030  0cn0 12233  cz 12319  cuz 12582  +crp 12730  cexp 13782  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041
This theorem is referenced by:  stirlinglem15  43629
  Copyright terms: Public domain W3C validator