| Step | Hyp | Ref
| Expression |
| 1 | | stirlinglem8.1 |
. . 3
⊢
Ⅎ𝑛𝜑 |
| 2 | | stirlinglem8.7 |
. . . 4
⊢ 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) |
| 3 | | nfmpt1 5225 |
. . . 4
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) |
| 4 | 2, 3 | nfcxfr 2897 |
. . 3
⊢
Ⅎ𝑛𝐿 |
| 5 | | stirlinglem8.8 |
. . . 4
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) |
| 6 | | nfmpt1 5225 |
. . . 4
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) |
| 7 | 5, 6 | nfcxfr 2897 |
. . 3
⊢
Ⅎ𝑛𝑀 |
| 8 | | stirlinglem8.6 |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) |
| 9 | | nfmpt1 5225 |
. . . 4
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) |
| 10 | 8, 9 | nfcxfr 2897 |
. . 3
⊢
Ⅎ𝑛𝐹 |
| 11 | | nnuz 12900 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 12 | | 1zzd 12628 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
| 13 | | stirlinglem8.2 |
. . . 4
⊢
Ⅎ𝑛𝐴 |
| 14 | | stirlinglem8.5 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ⟶ℝ+) |
| 15 | | rrpsscn 45584 |
. . . . 5
⊢
ℝ+ ⊆ ℂ |
| 16 | | fss 6727 |
. . . . 5
⊢ ((𝐴:ℕ⟶ℝ+ ∧
ℝ+ ⊆ ℂ) → 𝐴:ℕ⟶ℂ) |
| 17 | 14, 15, 16 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ⟶ℂ) |
| 18 | | stirlinglem8.11 |
. . . 4
⊢ (𝜑 → 𝐴 ⇝ 𝐶) |
| 19 | | 4nn0 12525 |
. . . . 5
⊢ 4 ∈
ℕ0 |
| 20 | 19 | a1i 11 |
. . . 4
⊢ (𝜑 → 4 ∈
ℕ0) |
| 21 | | nnex 12251 |
. . . . . . 7
⊢ ℕ
∈ V |
| 22 | 21 | mptex 7220 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) ∈ V |
| 23 | 2, 22 | eqeltri 2831 |
. . . . 5
⊢ 𝐿 ∈ V |
| 24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ V) |
| 25 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 26 | 14 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈
ℝ+) |
| 27 | 26 | rpcnd 13058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ ℂ) |
| 28 | 19 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 4 ∈
ℕ0) |
| 29 | 27, 28 | expcld 14169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛)↑4) ∈ ℂ) |
| 30 | 2 | fvmpt2 7002 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ ((𝐴‘𝑛)↑4) ∈ ℂ) → (𝐿‘𝑛) = ((𝐴‘𝑛)↑4)) |
| 31 | 25, 29, 30 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐿‘𝑛) = ((𝐴‘𝑛)↑4)) |
| 32 | 1, 13, 4, 11, 12, 17, 18, 20, 24, 31 | climexp 45601 |
. . 3
⊢ (𝜑 → 𝐿 ⇝ (𝐶↑4)) |
| 33 | 21 | mptex 7220 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) ∈ V |
| 34 | 8, 33 | eqeltri 2831 |
. . . 4
⊢ 𝐹 ∈ V |
| 35 | 34 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 36 | | stirlinglem8.3 |
. . . 4
⊢
Ⅎ𝑛𝐷 |
| 37 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:ℕ⟶ℂ) |
| 38 | | 2nn 12318 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 39 | 38 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 2 ∈
ℕ) |
| 40 | | id 22 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
| 41 | 39, 40 | nnmulcld 12298 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (2
· 𝑛) ∈
ℕ) |
| 42 | 41 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈
ℕ) |
| 43 | 37, 42 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℂ) |
| 44 | | stirlinglem8.4 |
. . . . 5
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) |
| 45 | 1, 43, 44 | fmptdf 7112 |
. . . 4
⊢ (𝜑 → 𝐷:ℕ⟶ℂ) |
| 46 | | nfmpt1 5225 |
. . . . 5
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ (2 · 𝑛)) |
| 47 | | fex 7223 |
. . . . . 6
⊢ ((𝐴:ℕ⟶ℂ ∧
ℕ ∈ V) → 𝐴
∈ V) |
| 48 | 17, 21, 47 | sylancl 586 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
| 49 | | 1nn 12256 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 50 | | 2cnd 12323 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) |
| 51 | | 1cnd 11235 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
| 52 | 50, 51 | mulcld 11260 |
. . . . . . 7
⊢ (𝜑 → (2 · 1) ∈
ℂ) |
| 53 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑛 = 1 → (2 · 𝑛) = (2 ·
1)) |
| 54 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (2
· 𝑛)) = (𝑛 ∈ ℕ ↦ (2
· 𝑛)) |
| 55 | 53, 54 | fvmptg 6989 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ (2 · 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 ·
1)) |
| 56 | 49, 52, 55 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 ·
1)) |
| 57 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℕ) |
| 58 | 49 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ) |
| 59 | 57, 58 | nnmulcld 12298 |
. . . . . 6
⊢ (𝜑 → (2 · 1) ∈
ℕ) |
| 60 | 56, 59 | eqeltrd 2835 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) ∈
ℕ) |
| 61 | | 1red 11241 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ) |
| 62 | 39 | nnred 12260 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 2 ∈
ℝ) |
| 63 | 41 | nnred 12260 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (2
· 𝑛) ∈
ℝ) |
| 64 | 39 | nnge1d 12293 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 1 ≤
2) |
| 65 | 61, 62, 63, 64 | leadd2dd 11857 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((2
· 𝑛) + 1) ≤ ((2
· 𝑛) +
2)) |
| 66 | 54 | fvmpt2 7002 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (2
· 𝑛) ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛)) |
| 67 | 41, 66 | mpdan 687 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘𝑛) = (2 · 𝑛)) |
| 68 | 67 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘𝑛) + 1) = ((2 · 𝑛) + 1)) |
| 69 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘)) |
| 70 | 69 | cbvmptv 5230 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ (2
· 𝑛)) = (𝑘 ∈ ℕ ↦ (2
· 𝑘)) |
| 71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ (2
· 𝑛)) = (𝑘 ∈ ℕ ↦ (2
· 𝑘))) |
| 72 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1)) |
| 73 | 72 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → (2 · 𝑘) = (2 · (𝑛 + 1))) |
| 74 | | peano2nn 12257 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 75 | 39, 74 | nnmulcld 12298 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 + 1)) ∈
ℕ) |
| 76 | 71, 73, 74, 75 | fvmptd 6998 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) = (2 · (𝑛 + 1))) |
| 77 | | 2cnd 12323 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 2 ∈
ℂ) |
| 78 | | nncn 12253 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 79 | | 1cnd 11235 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
| 80 | 77, 78, 79 | adddid 11264 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 + 1)) = ((2
· 𝑛) + (2 ·
1))) |
| 81 | 77 | mulridd 11257 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (2
· 1) = 2) |
| 82 | 81 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((2
· 𝑛) + (2 ·
1)) = ((2 · 𝑛) +
2)) |
| 83 | 76, 80, 82 | 3eqtrd 2775 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) = ((2 · 𝑛) + 2)) |
| 84 | 65, 68, 83 | 3brtr4d 5156 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))) |
| 85 | 41 | nnzd 12620 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (2
· 𝑛) ∈
ℤ) |
| 86 | 67, 85 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘𝑛) ∈
ℤ) |
| 87 | 86 | peano2zd 12705 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘𝑛) + 1) ∈
ℤ) |
| 88 | 75 | nnzd 12620 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 + 1)) ∈
ℤ) |
| 89 | 76, 88 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) ∈
ℤ) |
| 90 | | eluz 12871 |
. . . . . . . 8
⊢
(((((𝑛 ∈
ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ ∧ ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) ∈ ℤ) →
(((𝑛 ∈ ℕ ↦
(2 · 𝑛))‘(𝑛 + 1)) ∈
(ℤ≥‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))) |
| 91 | 87, 89, 90 | syl2anc 584 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) ∈
(ℤ≥‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))) |
| 92 | 84, 91 | mpbird 257 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2
· 𝑛))‘(𝑛 + 1)) ∈
(ℤ≥‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1))) |
| 93 | 92 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈
(ℤ≥‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1))) |
| 94 | 21 | mptex 7220 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) ∈ V |
| 95 | 44, 94 | eqeltri 2831 |
. . . . . 6
⊢ 𝐷 ∈ V |
| 96 | 95 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ V) |
| 97 | 44 | fvmpt2 7002 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷‘𝑛) = (𝐴‘(2 · 𝑛))) |
| 98 | 25, 43, 97 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝐴‘(2 · 𝑛))) |
| 99 | 67 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛)) |
| 100 | 99 | eqcomd 2742 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) = ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)) |
| 101 | 100 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))) |
| 102 | 98, 101 | eqtrd 2771 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))) |
| 103 | 1, 13, 36, 46, 11, 12, 48, 27, 18, 60, 93, 96, 102 | climsuse 45604 |
. . . 4
⊢ (𝜑 → 𝐷 ⇝ 𝐶) |
| 104 | | 2nn0 12523 |
. . . . 5
⊢ 2 ∈
ℕ0 |
| 105 | 104 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℕ0) |
| 106 | 21 | mptex 7220 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) ∈ V |
| 107 | 5, 106 | eqeltri 2831 |
. . . . 5
⊢ 𝑀 ∈ V |
| 108 | 107 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ V) |
| 109 | | stirlinglem8.9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈
ℝ+) |
| 110 | 109 | rpcnd 13058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈ ℂ) |
| 111 | 110 | sqcld 14167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)↑2) ∈ ℂ) |
| 112 | 5 | fvmpt2 7002 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ ((𝐷‘𝑛)↑2) ∈ ℂ) → (𝑀‘𝑛) = ((𝐷‘𝑛)↑2)) |
| 113 | 25, 111, 112 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) = ((𝐷‘𝑛)↑2)) |
| 114 | 1, 36, 7, 11, 12, 45, 103, 105, 108, 113 | climexp 45601 |
. . 3
⊢ (𝜑 → 𝑀 ⇝ (𝐶↑2)) |
| 115 | | stirlinglem8.10 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 116 | 115 | rpcnd 13058 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 117 | 115 | rpne0d 13061 |
. . . 4
⊢ (𝜑 → 𝐶 ≠ 0) |
| 118 | | 2z 12629 |
. . . . 5
⊢ 2 ∈
ℤ |
| 119 | 118 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℤ) |
| 120 | 116, 117,
119 | expne0d 14175 |
. . 3
⊢ (𝜑 → (𝐶↑2) ≠ 0) |
| 121 | 1, 29, 2 | fmptdf 7112 |
. . . 4
⊢ (𝜑 → 𝐿:ℕ⟶ℂ) |
| 122 | 121 | ffvelcdmda 7079 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐿‘𝑛) ∈ ℂ) |
| 123 | 113, 111 | eqeltrd 2835 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) ∈ ℂ) |
| 124 | 98 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)↑2) = ((𝐴‘(2 · 𝑛))↑2)) |
| 125 | 113, 124 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) = ((𝐴‘(2 · 𝑛))↑2)) |
| 126 | 98, 109 | eqeltrrd 2836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈
ℝ+) |
| 127 | 118 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈
ℤ) |
| 128 | 126, 127 | rpexpcld 14270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴‘(2 · 𝑛))↑2) ∈
ℝ+) |
| 129 | 125, 128 | eqeltrd 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) ∈
ℝ+) |
| 130 | 129 | rpne0d 13061 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) ≠ 0) |
| 131 | 130 | neneqd 2938 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ (𝑀‘𝑛) = 0) |
| 132 | | 0cn 11232 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 133 | | elsn2g 4645 |
. . . . . 6
⊢ (0 ∈
ℂ → ((𝑀‘𝑛) ∈ {0} ↔ (𝑀‘𝑛) = 0)) |
| 134 | 132, 133 | ax-mp 5 |
. . . . 5
⊢ ((𝑀‘𝑛) ∈ {0} ↔ (𝑀‘𝑛) = 0) |
| 135 | 131, 134 | sylnibr 329 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ (𝑀‘𝑛) ∈ {0}) |
| 136 | 123, 135 | eldifd 3942 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝑛) ∈ (ℂ ∖
{0})) |
| 137 | 28 | nn0zd 12619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 4 ∈
ℤ) |
| 138 | 26, 137 | rpexpcld 14270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛)↑4) ∈
ℝ+) |
| 139 | 109, 127 | rpexpcld 14270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘𝑛)↑2) ∈
ℝ+) |
| 140 | 138, 139 | rpdivcld 13073 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2)) ∈
ℝ+) |
| 141 | 8 | fvmpt2 7002 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2)) ∈ ℝ+) →
(𝐹‘𝑛) = (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) |
| 142 | 25, 140, 141 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) |
| 143 | 2 | fvmpt2 7002 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ ((𝐴‘𝑛)↑4) ∈ ℝ+) →
(𝐿‘𝑛) = ((𝐴‘𝑛)↑4)) |
| 144 | 25, 138, 143 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐿‘𝑛) = ((𝐴‘𝑛)↑4)) |
| 145 | 144, 113 | oveq12d 7428 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐿‘𝑛) / (𝑀‘𝑛)) = (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) |
| 146 | 142, 145 | eqtr4d 2774 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((𝐿‘𝑛) / (𝑀‘𝑛))) |
| 147 | 1, 4, 7, 10, 11, 12, 32, 35, 114, 120, 122, 136, 146 | climdivf 45608 |
. 2
⊢ (𝜑 → 𝐹 ⇝ ((𝐶↑4) / (𝐶↑2))) |
| 148 | | 2cn 12320 |
. . . . . 6
⊢ 2 ∈
ℂ |
| 149 | | 2p2e4 12380 |
. . . . . 6
⊢ (2 + 2) =
4 |
| 150 | 148, 148,
149 | mvlladdi 11506 |
. . . . 5
⊢ 2 = (4
− 2) |
| 151 | 150 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 = (4 −
2)) |
| 152 | 151 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (𝐶↑2) = (𝐶↑(4 − 2))) |
| 153 | 20 | nn0zd 12619 |
. . . 4
⊢ (𝜑 → 4 ∈
ℤ) |
| 154 | 116, 117,
119, 153 | expsubd 14180 |
. . 3
⊢ (𝜑 → (𝐶↑(4 − 2)) = ((𝐶↑4) / (𝐶↑2))) |
| 155 | 152, 154 | eqtrd 2771 |
. 2
⊢ (𝜑 → (𝐶↑2) = ((𝐶↑4) / (𝐶↑2))) |
| 156 | 147, 155 | breqtrrd 5152 |
1
⊢ (𝜑 → 𝐹 ⇝ (𝐶↑2)) |