Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem8 Structured version   Visualization version   GIF version

Theorem stirlinglem8 46037
Description: If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem8.1 𝑛𝜑
stirlinglem8.2 𝑛𝐴
stirlinglem8.3 𝑛𝐷
stirlinglem8.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem8.5 (𝜑𝐴:ℕ⟶ℝ+)
stirlinglem8.6 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem8.7 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
stirlinglem8.8 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
stirlinglem8.9 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
stirlinglem8.10 (𝜑𝐶 ∈ ℝ+)
stirlinglem8.11 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem8 (𝜑𝐹 ⇝ (𝐶↑2))

Proof of Theorem stirlinglem8
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem8.1 . . 3 𝑛𝜑
2 stirlinglem8.7 . . . 4 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
3 nfmpt1 5256 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
42, 3nfcxfr 2901 . . 3 𝑛𝐿
5 stirlinglem8.8 . . . 4 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6 nfmpt1 5256 . . . 4 𝑛(𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
75, 6nfcxfr 2901 . . 3 𝑛𝑀
8 stirlinglem8.6 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
9 nfmpt1 5256 . . . 4 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
108, 9nfcxfr 2901 . . 3 𝑛𝐹
11 nnuz 12919 . . 3 ℕ = (ℤ‘1)
12 1zzd 12646 . . 3 (𝜑 → 1 ∈ ℤ)
13 stirlinglem8.2 . . . 4 𝑛𝐴
14 stirlinglem8.5 . . . . 5 (𝜑𝐴:ℕ⟶ℝ+)
15 rrpsscn 45544 . . . . 5 + ⊆ ℂ
16 fss 6753 . . . . 5 ((𝐴:ℕ⟶ℝ+ ∧ ℝ+ ⊆ ℂ) → 𝐴:ℕ⟶ℂ)
1714, 15, 16sylancl 586 . . . 4 (𝜑𝐴:ℕ⟶ℂ)
18 stirlinglem8.11 . . . 4 (𝜑𝐴𝐶)
19 4nn0 12543 . . . . 5 4 ∈ ℕ0
2019a1i 11 . . . 4 (𝜑 → 4 ∈ ℕ0)
21 nnex 12270 . . . . . . 7 ℕ ∈ V
2221mptex 7243 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) ∈ V
232, 22eqeltri 2835 . . . . 5 𝐿 ∈ V
2423a1i 11 . . . 4 (𝜑𝐿 ∈ V)
25 simpr 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2614ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℝ+)
2726rpcnd 13077 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
2819a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℕ0)
2927, 28expcld 14183 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℂ)
302fvmpt2 7027 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℂ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
3125, 29, 30syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
321, 13, 4, 11, 12, 17, 18, 20, 24, 31climexp 45561 . . 3 (𝜑𝐿 ⇝ (𝐶↑4))
3321mptex 7243 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2))) ∈ V
348, 33eqeltri 2835 . . . 4 𝐹 ∈ V
3534a1i 11 . . 3 (𝜑𝐹 ∈ V)
36 stirlinglem8.3 . . . 4 𝑛𝐷
3717adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ⟶ℂ)
38 2nn 12337 . . . . . . . . 9 2 ∈ ℕ
3938a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 2 ∈ ℕ)
40 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
4139, 40nnmulcld 12317 . . . . . . 7 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
4241adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
4337, 42ffvelcdmd 7105 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℂ)
44 stirlinglem8.4 . . . . 5 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
451, 43, 44fmptdf 7137 . . . 4 (𝜑𝐷:ℕ⟶ℂ)
46 nfmpt1 5256 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ (2 · 𝑛))
47 fex 7246 . . . . . 6 ((𝐴:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐴 ∈ V)
4817, 21, 47sylancl 586 . . . . 5 (𝜑𝐴 ∈ V)
49 1nn 12275 . . . . . . 7 1 ∈ ℕ
50 2cnd 12342 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
51 1cnd 11254 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
5250, 51mulcld 11279 . . . . . . 7 (𝜑 → (2 · 1) ∈ ℂ)
53 oveq2 7439 . . . . . . . 8 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
54 eqid 2735 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑛 ∈ ℕ ↦ (2 · 𝑛))
5553, 54fvmptg 7014 . . . . . . 7 ((1 ∈ ℕ ∧ (2 · 1) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5649, 52, 55sylancr 587 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) = (2 · 1))
5738a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℕ)
5849a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
5957, 58nnmulcld 12317 . . . . . 6 (𝜑 → (2 · 1) ∈ ℕ)
6056, 59eqeltrd 2839 . . . . 5 (𝜑 → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘1) ∈ ℕ)
61 1red 11260 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℝ)
6239nnred 12279 . . . . . . . . 9 (𝑛 ∈ ℕ → 2 ∈ ℝ)
6341nnred 12279 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
6439nnge1d 12312 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ≤ 2)
6561, 62, 63, 64leadd2dd 11876 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≤ ((2 · 𝑛) + 2))
6654fvmpt2 7027 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6741, 66mpdan 687 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
6867oveq1d 7446 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) = ((2 · 𝑛) + 1))
69 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
7069cbvmptv 5261 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘))
7170a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ (2 · 𝑛)) = (𝑘 ∈ ℕ ↦ (2 · 𝑘)))
72 simpr 484 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
7372oveq2d 7447 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 = (𝑛 + 1)) → (2 · 𝑘) = (2 · (𝑛 + 1)))
74 peano2nn 12276 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
7539, 74nnmulcld 12317 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℕ)
7671, 73, 74, 75fvmptd 7023 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = (2 · (𝑛 + 1)))
77 2cnd 12342 . . . . . . . . . 10 (𝑛 ∈ ℕ → 2 ∈ ℂ)
78 nncn 12272 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
79 1cnd 11254 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8077, 78, 79adddid 11283 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8177mulridd 11276 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 1) = 2)
8281oveq2d 7447 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2))
8376, 80, 823eqtrd 2779 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) = ((2 · 𝑛) + 2))
8465, 68, 833brtr4d 5180 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)))
8541nnzd 12638 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℤ)
8667, 85eqeltrd 2839 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) ∈ ℤ)
8786peano2zd 12723 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ)
8875nnzd 12638 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · (𝑛 + 1)) ∈ ℤ)
8976, 88eqeltrd 2839 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ)
90 eluz 12890 . . . . . . . 8 (((((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ∈ ℤ ∧ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ ℤ) → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9187, 89, 90syl2anc 584 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)) ↔ (((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1) ≤ ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1))))
9284, 91mpbird 257 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9392adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘(𝑛 + 1)) ∈ (ℤ‘(((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) + 1)))
9421mptex 7243 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) ∈ V
9544, 94eqeltri 2835 . . . . . 6 𝐷 ∈ V
9695a1i 11 . . . . 5 (𝜑𝐷 ∈ V)
9744fvmpt2 7027 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9825, 43, 97syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
9967adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛) = (2 · 𝑛))
10099eqcomd 2741 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2 · 𝑛) = ((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛))
101100fveq2d 6911 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
10298, 101eqtrd 2775 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝐴‘((𝑛 ∈ ℕ ↦ (2 · 𝑛))‘𝑛)))
1031, 13, 36, 46, 11, 12, 48, 27, 18, 60, 93, 96, 102climsuse 45564 . . . 4 (𝜑𝐷𝐶)
104 2nn0 12541 . . . . 5 2 ∈ ℕ0
105104a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ0)
10621mptex 7243 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) ∈ V
1075, 106eqeltri 2835 . . . . 5 𝑀 ∈ V
108107a1i 11 . . . 4 (𝜑𝑀 ∈ V)
109 stirlinglem8.9 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
110109rpcnd 13077 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℂ)
111110sqcld 14181 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℂ)
1125fvmpt2 7027 . . . . 5 ((𝑛 ∈ ℕ ∧ ((𝐷𝑛)↑2) ∈ ℂ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
11325, 111, 112syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐷𝑛)↑2))
1141, 36, 7, 11, 12, 45, 103, 105, 108, 113climexp 45561 . . 3 (𝜑𝑀 ⇝ (𝐶↑2))
115 stirlinglem8.10 . . . . 5 (𝜑𝐶 ∈ ℝ+)
116115rpcnd 13077 . . . 4 (𝜑𝐶 ∈ ℂ)
117115rpne0d 13080 . . . 4 (𝜑𝐶 ≠ 0)
118 2z 12647 . . . . 5 2 ∈ ℤ
119118a1i 11 . . . 4 (𝜑 → 2 ∈ ℤ)
120116, 117, 119expne0d 14189 . . 3 (𝜑 → (𝐶↑2) ≠ 0)
1211, 29, 2fmptdf 7137 . . . 4 (𝜑𝐿:ℕ⟶ℂ)
122121ffvelcdmda 7104 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) ∈ ℂ)
123113, 111eqeltrd 2839 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
12498oveq1d 7446 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) = ((𝐴‘(2 · 𝑛))↑2))
125113, 124eqtrd 2775 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) = ((𝐴‘(2 · 𝑛))↑2))
12698, 109eqeltrrd 2840 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
127118a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℤ)
128126, 127rpexpcld 14283 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((𝐴‘(2 · 𝑛))↑2) ∈ ℝ+)
129125, 128eqeltrd 2839 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℝ+)
130129rpne0d 13080 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ≠ 0)
131130neneqd 2943 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) = 0)
132 0cn 11251 . . . . . 6 0 ∈ ℂ
133 elsn2g 4669 . . . . . 6 (0 ∈ ℂ → ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0))
134132, 133ax-mp 5 . . . . 5 ((𝑀𝑛) ∈ {0} ↔ (𝑀𝑛) = 0)
135131, 134sylnibr 329 . . . 4 ((𝜑𝑛 ∈ ℕ) → ¬ (𝑀𝑛) ∈ {0})
136123, 135eldifd 3974 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑀𝑛) ∈ (ℂ ∖ {0}))
13728nn0zd 12637 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 4 ∈ ℤ)
13826, 137rpexpcld 14283 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛)↑4) ∈ ℝ+)
139109, 127rpexpcld 14283 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛)↑2) ∈ ℝ+)
140138, 139rpdivcld 13092 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+)
1418fvmpt2 7027 . . . . 5 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℝ+) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
14225, 140, 141syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
1432fvmpt2 7027 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝐴𝑛)↑4) ∈ ℝ+) → (𝐿𝑛) = ((𝐴𝑛)↑4))
14425, 138, 143syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐿𝑛) = ((𝐴𝑛)↑4))
145144, 113oveq12d 7449 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐿𝑛) / (𝑀𝑛)) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
146142, 145eqtr4d 2778 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐿𝑛) / (𝑀𝑛)))
1471, 4, 7, 10, 11, 12, 32, 35, 114, 120, 122, 136, 146climdivf 45568 . 2 (𝜑𝐹 ⇝ ((𝐶↑4) / (𝐶↑2)))
148 2cn 12339 . . . . . 6 2 ∈ ℂ
149 2p2e4 12399 . . . . . 6 (2 + 2) = 4
150148, 148, 149mvlladdi 11525 . . . . 5 2 = (4 − 2)
151150a1i 11 . . . 4 (𝜑 → 2 = (4 − 2))
152151oveq2d 7447 . . 3 (𝜑 → (𝐶↑2) = (𝐶↑(4 − 2)))
15320nn0zd 12637 . . . 4 (𝜑 → 4 ∈ ℤ)
154116, 117, 119, 153expsubd 14194 . . 3 (𝜑 → (𝐶↑(4 − 2)) = ((𝐶↑4) / (𝐶↑2)))
155152, 154eqtrd 2775 . 2 (𝜑 → (𝐶↑2) = ((𝐶↑4) / (𝐶↑2)))
156147, 155breqtrrd 5176 1 (𝜑𝐹 ⇝ (𝐶↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  0cn0 12524  cz 12611  cuz 12876  +crp 13032  cexp 14099  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918
This theorem is referenced by:  stirlinglem15  46044
  Copyright terms: Public domain W3C validator