![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptss | Structured version Visualization version GIF version |
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
cncfmptss.1 | ⊢ Ⅎ𝑥𝐹 |
cncfmptss.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
cncfmptss.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
cncfmptss | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmptss.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 5995 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
3 | cncfmptss.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
4 | cncff 24259 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 5 | feqmptd 6911 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
7 | 6 | reseq1d 5937 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶)) |
8 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
9 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
10 | 8, 9 | nffv 6853 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
11 | cncfmptss.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
12 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
13 | 11, 12 | nffv 6853 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
14 | fveq2 6843 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
15 | 10, 13, 14 | cbvmpt 5217 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
17 | 2, 7, 16 | 3eqtr4rd 2788 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
18 | rescncf 24263 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) | |
19 | 1, 3, 18 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
20 | 17, 19 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2888 ⊆ wss 3911 ↦ cmpt 5189 ↾ cres 5636 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 –cn→ccncf 24242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-map 8768 df-cncf 24244 |
This theorem is referenced by: cncfmptssg 44119 itgsin0pilem1 44198 ibliccsinexp 44199 itgsinexplem1 44202 itgsinexp 44203 |
Copyright terms: Public domain | W3C validator |