Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptss | Structured version Visualization version GIF version |
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
cncfmptss.1 | ⊢ Ⅎ𝑥𝐹 |
cncfmptss.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
cncfmptss.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
cncfmptss | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmptss.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 5880 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
3 | cncfmptss.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
4 | cncff 23594 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 5 | feqmptd 6721 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
7 | 6 | reseq1d 5822 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶)) |
8 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
9 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
10 | 8, 9 | nffv 6668 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
11 | cncfmptss.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
12 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
13 | 11, 12 | nffv 6668 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
14 | fveq2 6658 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
15 | 10, 13, 14 | cbvmpt 5133 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
17 | 2, 7, 16 | 3eqtr4rd 2804 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
18 | rescncf 23598 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) | |
19 | 1, 3, 18 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
20 | 17, 19 | eqeltrd 2852 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Ⅎwnfc 2899 ⊆ wss 3858 ↦ cmpt 5112 ↾ cres 5526 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 –cn→ccncf 23577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-cncf 23579 |
This theorem is referenced by: cncfmptssg 42879 itgsin0pilem1 42958 ibliccsinexp 42959 itgsinexplem1 42962 itgsinexp 42963 |
Copyright terms: Public domain | W3C validator |