| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptss | Structured version Visualization version GIF version | ||
| Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| cncfmptss.1 | ⊢ Ⅎ𝑥𝐹 |
| cncfmptss.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| cncfmptss.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| cncfmptss | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptss.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 2 | 1 | resmptd 5989 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 3 | cncfmptss.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 4 | cncff 24811 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 6 | 5 | feqmptd 6890 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 7 | 6 | reseq1d 5927 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶)) |
| 8 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
| 9 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
| 10 | 8, 9 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
| 11 | cncfmptss.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 12 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 13 | 11, 12 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 14 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 15 | 10, 13, 14 | cbvmpt 5193 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 17 | 2, 7, 16 | 3eqtr4rd 2777 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
| 18 | rescncf 24815 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) | |
| 19 | 1, 3, 18 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
| 20 | 17, 19 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ⊆ wss 3902 ↦ cmpt 5172 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 –cn→ccncf 24794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-cncf 24796 |
| This theorem is referenced by: cncfmptssg 45908 itgsin0pilem1 45987 ibliccsinexp 45988 itgsinexplem1 45991 itgsinexp 45992 |
| Copyright terms: Public domain | W3C validator |