| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptss | Structured version Visualization version GIF version | ||
| Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| cncfmptss.1 | ⊢ Ⅎ𝑥𝐹 |
| cncfmptss.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| cncfmptss.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| cncfmptss | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptss.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 2 | 1 | resmptd 6038 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 3 | cncfmptss.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
| 4 | cncff 24854 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 6 | 5 | feqmptd 6956 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 7 | 6 | reseq1d 5976 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶)) |
| 8 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
| 9 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
| 10 | 8, 9 | nffv 6895 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
| 11 | cncfmptss.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 12 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
| 13 | 11, 12 | nffv 6895 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 14 | fveq2 6885 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 15 | 10, 13, 14 | cbvmpt 5233 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 17 | 2, 7, 16 | 3eqtr4rd 2780 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
| 18 | rescncf 24858 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) | |
| 19 | 1, 3, 18 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
| 20 | 17, 19 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 ⊆ wss 3931 ↦ cmpt 5205 ↾ cres 5667 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 –cn→ccncf 24837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8849 df-cncf 24839 |
| This theorem is referenced by: cncfmptssg 45819 itgsin0pilem1 45898 ibliccsinexp 45899 itgsinexplem1 45902 itgsinexp 45903 |
| Copyright terms: Public domain | W3C validator |