![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfmptss | Structured version Visualization version GIF version |
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
cncfmptss.1 | ⊢ Ⅎ𝑥𝐹 |
cncfmptss.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
cncfmptss.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
cncfmptss | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmptss.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 6068 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
3 | cncfmptss.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) | |
4 | cncff 24931 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 5 | feqmptd 6989 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
7 | 6 | reseq1d 6007 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦)) ↾ 𝐶)) |
8 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
9 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
10 | 8, 9 | nffv 6929 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
11 | cncfmptss.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
12 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
13 | 11, 12 | nffv 6929 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
14 | fveq2 6919 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
15 | 10, 13, 14 | cbvmpt 5280 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦)) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
17 | 2, 7, 16 | 3eqtr4rd 2785 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
18 | rescncf 24935 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) | |
19 | 1, 3, 18 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵)) |
20 | 17, 19 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ (𝐶–cn→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 Ⅎwnfc 2888 ⊆ wss 3970 ↦ cmpt 5252 ↾ cres 5701 ⟶wf 6568 ‘cfv 6572 (class class class)co 7445 –cn→ccncf 24914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 df-map 8882 df-cncf 24916 |
This theorem is referenced by: cncfmptssg 45727 itgsin0pilem1 45806 ibliccsinexp 45807 itgsinexplem1 45810 itgsinexp 45811 |
Copyright terms: Public domain | W3C validator |