Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfmptss Structured version   Visualization version   GIF version

Theorem cncfmptss 40457
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
cncfmptss.1 𝑥𝐹
cncfmptss.2 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfmptss.3 (𝜑𝐶𝐴)
Assertion
Ref Expression
cncfmptss (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem cncfmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncfmptss.3 . . . 4 (𝜑𝐶𝐴)
21resmptd 5629 . . 3 (𝜑 → ((𝑦𝐴 ↦ (𝐹𝑦)) ↾ 𝐶) = (𝑦𝐶 ↦ (𝐹𝑦)))
3 cncfmptss.2 . . . . . 6 (𝜑𝐹 ∈ (𝐴cn𝐵))
4 cncff 22975 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
53, 4syl 17 . . . . 5 (𝜑𝐹:𝐴𝐵)
65feqmptd 6438 . . . 4 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
76reseq1d 5564 . . 3 (𝜑 → (𝐹𝐶) = ((𝑦𝐴 ↦ (𝐹𝑦)) ↾ 𝐶))
8 nfcv 2907 . . . . . 6 𝑦𝐹
9 nfcv 2907 . . . . . 6 𝑦𝑥
108, 9nffv 6385 . . . . 5 𝑦(𝐹𝑥)
11 cncfmptss.1 . . . . . 6 𝑥𝐹
12 nfcv 2907 . . . . . 6 𝑥𝑦
1311, 12nffv 6385 . . . . 5 𝑥(𝐹𝑦)
14 fveq2 6375 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1510, 13, 14cbvmpt 4908 . . . 4 (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑦𝐶 ↦ (𝐹𝑦))
1615a1i 11 . . 3 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑦𝐶 ↦ (𝐹𝑦)))
172, 7, 163eqtr4rd 2810 . 2 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
18 rescncf 22979 . . 3 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
191, 3, 18sylc 65 . 2 (𝜑 → (𝐹𝐶) ∈ (𝐶cn𝐵))
2017, 19eqeltrd 2844 1 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  wnfc 2894  wss 3732  cmpt 4888  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cnccncf 22958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-map 8062  df-cncf 22960
This theorem is referenced by:  cncfmptssg  40721  itgsin0pilem1  40803  ibliccsinexp  40804  itgsinexplem1  40807  itgsinexp  40808
  Copyright terms: Public domain W3C validator