| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3583 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 |
| This theorem is referenced by: rspc2dv 3587 swopo 5533 f1ounsn 7206 soisores 7261 soisoi 7262 isocnv 7264 isotr 7270 ovrspc2v 7372 coof 7634 caofrss 7649 caonncan 7654 frpoins3xpg 8070 coflton 8586 wunpr 10600 injresinj 13691 seqcaopr2 13945 rlimcn3 15497 o1of2 15520 isprm6 16625 ssc2 17729 pospropd 18231 tleile 18325 mgmhmpropd 18606 mhmpropd 18700 grpidssd 18929 grpinvssd 18930 dfgrp3lem 18951 isnsg3 19072 cyccom 19115 symgextf1 19333 efgredlemd 19656 efgredlem 19659 rglcom4d 20129 rnghmmul 20367 domneq0 20623 issrngd 20770 orngmul 20780 lindfind 21753 lindsind 21754 mplsubglem 21936 mdetunilem1 22527 mdetunilem3 22529 mdetunilem4 22530 mdetunilem9 22535 decpmatmulsumfsupp 22688 pm2mpf1 22714 pm2mpmhmlem1 22733 t0sep 23239 tsmsxplem2 24069 comet 24428 nrmmetd 24489 tngngp 24569 reconnlem2 24743 iscmet3lem1 25218 iscmet3lem2 25219 dchrisumlem1 27427 pntpbnd1 27524 ssltsepc 27734 tgjustc1 28453 tgjustc2 28454 iscgrglt 28492 motcgr 28514 perpneq 28692 foot 28700 f1otrg 28849 axcontlem10 28951 frgr2wwlk1 30309 lindsunlem 33637 mndpluscn 33939 unelros 34184 difelros 34185 inelsros 34191 diffiunisros 34192 elmrsubrn 35564 ghomco 37941 sticksstones10 42258 sticksstones12a 42260 fsuppind 42693 mzpcl34 42834 ntrk0kbimka 44142 isotone1 44151 isotone2 44152 nnfoctbdjlem 46563 2arymaptf1 48764 |
| Copyright terms: Public domain | W3C validator |