![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | rspc2v 3646 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: rspc2dv 3650 swopo 5619 soisores 7363 soisoi 7364 isocnv 7366 isotr 7372 ovrspc2v 7474 coof 7737 caofrss 7751 caonncan 7756 frpoins3xpg 8181 coflton 8727 wunpr 10778 injresinj 13838 seqcaopr2 14089 rlimcn3 15636 o1of2 15659 isprm6 16761 ssc2 17883 pospropd 18397 tleile 18491 mgmhmpropd 18736 mhmpropd 18827 grpidssd 19056 grpinvssd 19057 dfgrp3lem 19078 isnsg3 19200 cyccom 19243 symgextf1 19463 efgredlemd 19786 efgredlem 19789 rglcom4d 20238 rnghmmul 20475 domneq0 20730 issrngd 20878 lindfind 21859 lindsind 21860 mplsubglem 22042 mdetunilem1 22639 mdetunilem3 22641 mdetunilem4 22642 mdetunilem9 22647 decpmatmulsumfsupp 22800 pm2mpf1 22826 pm2mpmhmlem1 22845 t0sep 23353 tsmsxplem2 24183 comet 24547 nrmmetd 24608 tngngp 24696 reconnlem2 24868 iscmet3lem1 25344 iscmet3lem2 25345 dchrisumlem1 27551 pntpbnd1 27648 ssltsepc 27856 tgjustc1 28501 tgjustc2 28502 iscgrglt 28540 motcgr 28562 perpneq 28740 foot 28748 f1otrg 28897 axcontlem10 29006 frgr2wwlk1 30361 orngmul 33298 lindsunlem 33637 mndpluscn 33872 unelros 34135 difelros 34136 inelsros 34142 diffiunisros 34143 elmrsubrn 35488 ghomco 37851 sticksstones10 42112 sticksstones12a 42114 fsuppind 42545 mzpcl34 42687 ntrk0kbimka 44001 isotone1 44010 isotone2 44011 nnfoctbdjlem 46376 2arymaptf1 48387 |
Copyright terms: Public domain | W3C validator |