| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3602 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: rspc2dv 3606 swopo 5560 f1ounsn 7250 soisores 7305 soisoi 7306 isocnv 7308 isotr 7314 ovrspc2v 7416 coof 7680 caofrss 7695 caonncan 7700 frpoins3xpg 8122 coflton 8638 wunpr 10669 injresinj 13756 seqcaopr2 14010 rlimcn3 15563 o1of2 15586 isprm6 16691 ssc2 17791 pospropd 18293 tleile 18387 mgmhmpropd 18632 mhmpropd 18726 grpidssd 18955 grpinvssd 18956 dfgrp3lem 18977 isnsg3 19099 cyccom 19142 symgextf1 19358 efgredlemd 19681 efgredlem 19684 rglcom4d 20127 rnghmmul 20365 domneq0 20624 issrngd 20771 lindfind 21732 lindsind 21733 mplsubglem 21915 mdetunilem1 22506 mdetunilem3 22508 mdetunilem4 22509 mdetunilem9 22514 decpmatmulsumfsupp 22667 pm2mpf1 22693 pm2mpmhmlem1 22712 t0sep 23218 tsmsxplem2 24048 comet 24408 nrmmetd 24469 tngngp 24549 reconnlem2 24723 iscmet3lem1 25198 iscmet3lem2 25199 dchrisumlem1 27407 pntpbnd1 27504 ssltsepc 27712 tgjustc1 28409 tgjustc2 28410 iscgrglt 28448 motcgr 28470 perpneq 28648 foot 28656 f1otrg 28805 axcontlem10 28907 frgr2wwlk1 30265 orngmul 33288 lindsunlem 33627 mndpluscn 33923 unelros 34168 difelros 34169 inelsros 34175 diffiunisros 34176 elmrsubrn 35514 ghomco 37892 sticksstones10 42150 sticksstones12a 42152 fsuppind 42585 mzpcl34 42726 ntrk0kbimka 44035 isotone1 44044 isotone2 44045 nnfoctbdjlem 46460 2arymaptf1 48646 |
| Copyright terms: Public domain | W3C validator |