| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3588 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc2dv 3592 swopo 5538 f1ounsn 7209 soisores 7264 soisoi 7265 isocnv 7267 isotr 7273 ovrspc2v 7375 coof 7637 caofrss 7652 caonncan 7657 frpoins3xpg 8073 coflton 8589 wunpr 10603 injresinj 13691 seqcaopr2 13945 rlimcn3 15497 o1of2 15520 isprm6 16625 ssc2 17729 pospropd 18231 tleile 18325 mgmhmpropd 18572 mhmpropd 18666 grpidssd 18895 grpinvssd 18896 dfgrp3lem 18917 isnsg3 19039 cyccom 19082 symgextf1 19300 efgredlemd 19623 efgredlem 19626 rglcom4d 20096 rnghmmul 20334 domneq0 20593 issrngd 20740 orngmul 20750 lindfind 21723 lindsind 21724 mplsubglem 21906 mdetunilem1 22497 mdetunilem3 22499 mdetunilem4 22500 mdetunilem9 22505 decpmatmulsumfsupp 22658 pm2mpf1 22684 pm2mpmhmlem1 22703 t0sep 23209 tsmsxplem2 24039 comet 24399 nrmmetd 24460 tngngp 24540 reconnlem2 24714 iscmet3lem1 25189 iscmet3lem2 25190 dchrisumlem1 27398 pntpbnd1 27495 ssltsepc 27704 tgjustc1 28420 tgjustc2 28421 iscgrglt 28459 motcgr 28481 perpneq 28659 foot 28667 f1otrg 28816 axcontlem10 28918 frgr2wwlk1 30273 lindsunlem 33597 mndpluscn 33899 unelros 34144 difelros 34145 inelsros 34151 diffiunisros 34152 elmrsubrn 35503 ghomco 37881 sticksstones10 42138 sticksstones12a 42140 fsuppind 42573 mzpcl34 42714 ntrk0kbimka 44022 isotone1 44031 isotone2 44032 nnfoctbdjlem 46446 2arymaptf1 48648 |
| Copyright terms: Public domain | W3C validator |