| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3596 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc2dv 3600 swopo 5550 f1ounsn 7229 soisores 7284 soisoi 7285 isocnv 7287 isotr 7293 ovrspc2v 7395 coof 7657 caofrss 7672 caonncan 7677 frpoins3xpg 8096 coflton 8612 wunpr 10638 injresinj 13725 seqcaopr2 13979 rlimcn3 15532 o1of2 15555 isprm6 16660 ssc2 17764 pospropd 18266 tleile 18360 mgmhmpropd 18607 mhmpropd 18701 grpidssd 18930 grpinvssd 18931 dfgrp3lem 18952 isnsg3 19074 cyccom 19117 symgextf1 19335 efgredlemd 19658 efgredlem 19661 rglcom4d 20131 rnghmmul 20369 domneq0 20628 issrngd 20775 orngmul 20785 lindfind 21758 lindsind 21759 mplsubglem 21941 mdetunilem1 22532 mdetunilem3 22534 mdetunilem4 22535 mdetunilem9 22540 decpmatmulsumfsupp 22693 pm2mpf1 22719 pm2mpmhmlem1 22738 t0sep 23244 tsmsxplem2 24074 comet 24434 nrmmetd 24495 tngngp 24575 reconnlem2 24749 iscmet3lem1 25224 iscmet3lem2 25225 dchrisumlem1 27433 pntpbnd1 27530 ssltsepc 27739 tgjustc1 28455 tgjustc2 28456 iscgrglt 28494 motcgr 28516 perpneq 28694 foot 28702 f1otrg 28851 axcontlem10 28953 frgr2wwlk1 30308 lindsunlem 33613 mndpluscn 33909 unelros 34154 difelros 34155 inelsros 34161 diffiunisros 34162 elmrsubrn 35500 ghomco 37878 sticksstones10 42136 sticksstones12a 42138 fsuppind 42571 mzpcl34 42712 ntrk0kbimka 44021 isotone1 44030 isotone2 44031 nnfoctbdjlem 46446 2arymaptf1 48635 |
| Copyright terms: Public domain | W3C validator |