![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | rspc2v 3632 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 |
This theorem is referenced by: rspc2dv 3636 swopo 5607 f1ounsn 7291 soisores 7346 soisoi 7347 isocnv 7349 isotr 7355 ovrspc2v 7456 coof 7720 caofrss 7734 caonncan 7739 frpoins3xpg 8163 coflton 8707 wunpr 10746 injresinj 13823 seqcaopr2 14075 rlimcn3 15622 o1of2 15645 isprm6 16747 ssc2 17869 pospropd 18384 tleile 18478 mgmhmpropd 18723 mhmpropd 18817 grpidssd 19046 grpinvssd 19047 dfgrp3lem 19068 isnsg3 19190 cyccom 19233 symgextf1 19453 efgredlemd 19776 efgredlem 19779 rglcom4d 20228 rnghmmul 20465 domneq0 20724 issrngd 20872 lindfind 21853 lindsind 21854 mplsubglem 22036 mdetunilem1 22633 mdetunilem3 22635 mdetunilem4 22636 mdetunilem9 22641 decpmatmulsumfsupp 22794 pm2mpf1 22820 pm2mpmhmlem1 22839 t0sep 23347 tsmsxplem2 24177 comet 24541 nrmmetd 24602 tngngp 24690 reconnlem2 24862 iscmet3lem1 25338 iscmet3lem2 25339 dchrisumlem1 27547 pntpbnd1 27644 ssltsepc 27852 tgjustc1 28497 tgjustc2 28498 iscgrglt 28536 motcgr 28558 perpneq 28736 foot 28744 f1otrg 28893 axcontlem10 29002 frgr2wwlk1 30357 orngmul 33312 lindsunlem 33651 mndpluscn 33886 unelros 34151 difelros 34152 inelsros 34158 diffiunisros 34159 elmrsubrn 35504 ghomco 37877 sticksstones10 42136 sticksstones12a 42138 fsuppind 42576 mzpcl34 42718 ntrk0kbimka 44028 isotone1 44037 isotone2 44038 nnfoctbdjlem 46410 2arymaptf1 48502 |
Copyright terms: Public domain | W3C validator |