| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3599 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc2dv 3603 swopo 5557 f1ounsn 7247 soisores 7302 soisoi 7303 isocnv 7305 isotr 7311 ovrspc2v 7413 coof 7677 caofrss 7692 caonncan 7697 frpoins3xpg 8119 coflton 8635 wunpr 10662 injresinj 13749 seqcaopr2 14003 rlimcn3 15556 o1of2 15579 isprm6 16684 ssc2 17784 pospropd 18286 tleile 18380 mgmhmpropd 18625 mhmpropd 18719 grpidssd 18948 grpinvssd 18949 dfgrp3lem 18970 isnsg3 19092 cyccom 19135 symgextf1 19351 efgredlemd 19674 efgredlem 19677 rglcom4d 20120 rnghmmul 20358 domneq0 20617 issrngd 20764 lindfind 21725 lindsind 21726 mplsubglem 21908 mdetunilem1 22499 mdetunilem3 22501 mdetunilem4 22502 mdetunilem9 22507 decpmatmulsumfsupp 22660 pm2mpf1 22686 pm2mpmhmlem1 22705 t0sep 23211 tsmsxplem2 24041 comet 24401 nrmmetd 24462 tngngp 24542 reconnlem2 24716 iscmet3lem1 25191 iscmet3lem2 25192 dchrisumlem1 27400 pntpbnd1 27497 ssltsepc 27705 tgjustc1 28402 tgjustc2 28403 iscgrglt 28441 motcgr 28463 perpneq 28641 foot 28649 f1otrg 28798 axcontlem10 28900 frgr2wwlk1 30258 orngmul 33281 lindsunlem 33620 mndpluscn 33916 unelros 34161 difelros 34162 inelsros 34168 diffiunisros 34169 elmrsubrn 35507 ghomco 37885 sticksstones10 42143 sticksstones12a 42145 fsuppind 42578 mzpcl34 42719 ntrk0kbimka 44028 isotone1 44037 isotone2 44038 nnfoctbdjlem 46453 2arymaptf1 48642 |
| Copyright terms: Public domain | W3C validator |