Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | rspc2v 3562 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: swopo 5505 soisores 7178 soisoi 7179 isocnv 7181 isotr 7187 ovrspc2v 7281 caofrss 7547 caonncan 7552 wunpr 10396 injresinj 13436 seqcaopr2 13687 rlimcn3 15227 o1of2 15250 isprm6 16347 ssc2 17451 pospropd 17960 tleile 18054 mhmpropd 18351 grpidssd 18566 grpinvssd 18567 dfgrp3lem 18588 isnsg3 18703 cyccom 18737 symgextf1 18944 efgredlemd 19265 efgredlem 19268 issrngd 20036 domneq0 20481 lindfind 20933 lindsind 20934 mplsubglem 21115 mdetunilem1 21669 mdetunilem3 21671 mdetunilem4 21672 mdetunilem9 21677 decpmatmulsumfsupp 21830 pm2mpf1 21856 pm2mpmhmlem1 21875 t0sep 22383 tsmsxplem2 23213 comet 23575 nrmmetd 23636 tngngp 23724 reconnlem2 23896 iscmet3lem1 24360 iscmet3lem2 24361 dchrisumlem1 26542 pntpbnd1 26639 tgjustc1 26740 tgjustc2 26741 iscgrglt 26779 motcgr 26801 perpneq 26979 foot 26987 f1otrg 27136 axcontlem10 27244 frgr2wwlk1 28594 orngmul 31404 lindsunlem 31607 mndpluscn 31778 unelros 32039 difelros 32040 inelsros 32046 diffiunisros 32047 cvxsconn 33105 elmrsubrn 33382 frpoins3xpg 33714 ssltsepc 33914 ghomco 35976 sticksstones10 40039 sticksstones12a 40041 fsuppind 40202 mzpcl34 40469 ntrk0kbimka 41538 isotone1 41547 isotone2 41548 nnfoctbdjlem 43883 isomuspgrlem2d 45171 mgmhmpropd 45227 rnghmmul 45346 2arymaptf1 45887 |
Copyright terms: Public domain | W3C validator |