| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2va | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2va | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | rspc2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | rspc2v 3612 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) |
| 4 | 3 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 |
| This theorem is referenced by: rspc2dv 3616 swopo 5572 f1ounsn 7264 soisores 7319 soisoi 7320 isocnv 7322 isotr 7328 ovrspc2v 7429 coof 7693 caofrss 7708 caonncan 7713 frpoins3xpg 8137 coflton 8681 wunpr 10721 injresinj 13802 seqcaopr2 14054 rlimcn3 15604 o1of2 15627 isprm6 16731 ssc2 17833 pospropd 18335 tleile 18429 mgmhmpropd 18674 mhmpropd 18768 grpidssd 18997 grpinvssd 18998 dfgrp3lem 19019 isnsg3 19141 cyccom 19184 symgextf1 19400 efgredlemd 19723 efgredlem 19726 rglcom4d 20169 rnghmmul 20407 domneq0 20666 issrngd 20813 lindfind 21774 lindsind 21775 mplsubglem 21957 mdetunilem1 22548 mdetunilem3 22550 mdetunilem4 22551 mdetunilem9 22556 decpmatmulsumfsupp 22709 pm2mpf1 22735 pm2mpmhmlem1 22754 t0sep 23260 tsmsxplem2 24090 comet 24450 nrmmetd 24511 tngngp 24591 reconnlem2 24765 iscmet3lem1 25241 iscmet3lem2 25242 dchrisumlem1 27450 pntpbnd1 27547 ssltsepc 27755 tgjustc1 28400 tgjustc2 28401 iscgrglt 28439 motcgr 28461 perpneq 28639 foot 28647 f1otrg 28796 axcontlem10 28898 frgr2wwlk1 30256 orngmul 33271 lindsunlem 33610 mndpluscn 33903 unelros 34148 difelros 34149 inelsros 34155 diffiunisros 34156 elmrsubrn 35488 ghomco 37861 sticksstones10 42114 sticksstones12a 42116 fsuppind 42560 mzpcl34 42701 ntrk0kbimka 44010 isotone1 44019 isotone2 44020 nnfoctbdjlem 46432 2arymaptf1 48581 |
| Copyright terms: Public domain | W3C validator |