Step | Hyp | Ref
| Expression |
1 | | cvxpconn.1 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
2 | | cvxpconn.2 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
3 | | cvxpconn.3 |
. . 3
⊢ 𝐽 =
(TopOpen‘ℂfld) |
4 | | cvxpconn.4 |
. . 3
⊢ 𝐾 = (𝐽 ↾t 𝑆) |
5 | 1, 2, 3, 4 | cvxpconn 33213 |
. 2
⊢ (𝜑 → 𝐾 ∈ PConn) |
6 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐾)) |
7 | | pconntop 33196 |
. . . . . . . . . 10
⊢ (𝐾 ∈ PConn → 𝐾 ∈ Top) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ Top) |
10 | | eqid 2739 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ 𝐾 |
11 | 10 | toptopon 22075 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
12 | 9, 11 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
13 | | iiuni 24053 |
. . . . . . . . . 10
⊢ (0[,]1) =
∪ II |
14 | 13, 10 | cnf 22406 |
. . . . . . . . 9
⊢ (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶∪
𝐾) |
15 | 6, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶∪
𝐾) |
16 | | 0elunit 13210 |
. . . . . . . 8
⊢ 0 ∈
(0[,]1) |
17 | | ffvelrn 6968 |
. . . . . . . 8
⊢ ((𝑓:(0[,]1)⟶∪ 𝐾
∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ ∪
𝐾) |
18 | 15, 16, 17 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ∪
𝐾) |
19 | | eqid 2739 |
. . . . . . . 8
⊢ ((0[,]1)
× {(𝑓‘0)}) =
((0[,]1) × {(𝑓‘0)}) |
20 | 19 | pcoptcl 24193 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑓‘0) ∈
∪ 𝐾) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
21 | 12, 18, 20 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
22 | 21 | simp1d 1141 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾)) |
23 | | iitopon 24051 |
. . . . . . . . . . 11
⊢ II ∈
(TopOn‘(0[,]1)) |
24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈
(TopOn‘(0[,]1))) |
25 | 3 | dfii3 24055 |
. . . . . . . . . . . 12
⊢ II =
(𝐽 ↾t
(0[,]1)) |
26 | 3 | cnfldtopon 23955 |
. . . . . . . . . . . . 13
⊢ 𝐽 ∈
(TopOn‘ℂ) |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈
(TopOn‘ℂ)) |
28 | | unitssre 13240 |
. . . . . . . . . . . . . 14
⊢ (0[,]1)
⊆ ℝ |
29 | | ax-resscn 10937 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
30 | 28, 29 | sstri 3931 |
. . . . . . . . . . . . 13
⊢ (0[,]1)
⊆ ℂ |
31 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (0[,]1) ⊆
ℂ) |
32 | 27, 27 | cnmpt2nd 22829 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 𝑡) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
33 | 25, 27, 31, 25, 27, 31, 32 | cnmpt2res 22837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((II ×t II) Cn
𝐽)) |
34 | 1 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ⊆ ℂ) |
35 | | resttopon 22321 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
36 | 26, 1, 35 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
37 | 4, 36 | eqeltrid 2844 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑆)) |
38 | | toponuni 22072 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐾) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 = ∪ 𝐾) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 = ∪ 𝐾) |
41 | 18, 40 | eleqtrrd 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑆) |
42 | 34, 41 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ℂ) |
43 | 24, 24, 27, 42 | cnmpt2c 22830 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘0)) ∈ ((II ×t
II) Cn 𝐽)) |
44 | 3 | mulcn 24039 |
. . . . . . . . . . . 12
⊢ ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
45 | 44 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
46 | 24, 24, 33, 43, 45 | cnmpt22f 22835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑡 · (𝑓‘0))) ∈ ((II ×t
II) Cn 𝐽)) |
47 | | ax-1cn 10938 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 1 ∈
ℂ) |
49 | 27, 27, 27, 48 | cnmpt2c 22830 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 1) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
50 | 3 | subcn 24038 |
. . . . . . . . . . . . . 14
⊢ −
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
51 | 50 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
52 | 27, 27, 49, 32, 51 | cnmpt22f 22835 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
53 | 25, 27, 31, 25, 27, 31, 52 | cnmpt2res 22837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((II
×t II) Cn 𝐽)) |
54 | 24, 24 | cnmpt1st 22828 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑧) ∈ ((II ×t II) Cn
II)) |
55 | 3 | cnfldtop 23956 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ Top |
56 | | cnrest2r 22447 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → (II Cn (𝐽 ↾t 𝑆)) ⊆ (II Cn 𝐽)) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (II Cn
(𝐽 ↾t
𝑆)) ⊆ (II Cn 𝐽) |
58 | 4 | oveq2i 7295 |
. . . . . . . . . . . . . 14
⊢ (II Cn
𝐾) = (II Cn (𝐽 ↾t 𝑆)) |
59 | 6, 58 | eleqtrdi 2850 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝐽 ↾t 𝑆))) |
60 | 57, 59 | sselid 3920 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽)) |
61 | 24, 24, 54, 60 | cnmpt21f 22832 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘𝑧)) ∈ ((II ×t II) Cn
𝐽)) |
62 | 24, 24, 53, 61, 45 | cnmpt22f 22835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((1 − 𝑡) · (𝑓‘𝑧))) ∈ ((II ×t II) Cn
𝐽)) |
63 | 3 | addcn 24037 |
. . . . . . . . . . 11
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
64 | 63 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
65 | 24, 24, 46, 62, 64 | cnmpt22f 22835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽)) |
66 | 41 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘0) ∈ 𝑆) |
67 | 15 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑓:(0[,]1)⟶∪
𝐾) |
68 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑧 ∈ (0[,]1)) |
69 | 67, 68 | ffvelrnd 6971 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘𝑧) ∈ ∪ 𝐾) |
70 | 40 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑆 = ∪ 𝐾) |
71 | 69, 70 | eleqtrrd 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘𝑧) ∈ 𝑆) |
72 | 2 | 3exp2 1353 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)))) |
73 | 72 | imp42 427 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
74 | 73 | an32s 649 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
75 | 74 | ralrimivva 3124 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
76 | 75 | ad2ant2rl 746 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
77 | | oveq2 7292 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑓‘0) → (𝑡 · 𝑥) = (𝑡 · (𝑓‘0))) |
78 | 77 | oveq1d 7299 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓‘0) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦))) |
79 | 78 | eleq1d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓‘0) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)) |
80 | | oveq2 7292 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑓‘𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑓‘𝑧))) |
81 | 80 | oveq2d 7300 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑓‘𝑧) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) |
82 | 81 | eleq1d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑓‘𝑧) → (((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆)) |
83 | 79, 82 | rspc2va 3572 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓‘0) ∈ 𝑆 ∧ (𝑓‘𝑧) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆) |
84 | 66, 71, 76, 83 | syl21anc 835 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆) |
85 | 84 | ralrimivva 3124 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆) |
86 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) = (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) |
87 | 86 | fmpo 7917 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
(0[,]1)∀𝑡 ∈
(0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆 ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))):((0[,]1) × (0[,]1))⟶𝑆) |
88 | 85, 87 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))):((0[,]1) × (0[,]1))⟶𝑆) |
89 | 88 | frnd 6617 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ⊆ 𝑆) |
90 | | cnrest2 22446 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ ran (𝑧 ∈
(0[,]1), 𝑡 ∈ (0[,]1)
↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆)))) |
91 | 27, 89, 34, 90 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆)))) |
92 | 65, 91 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆))) |
93 | 4 | oveq2i 7295 |
. . . . . . . 8
⊢ ((II
×t II) Cn 𝐾) = ((II ×t II) Cn (𝐽 ↾t 𝑆)) |
94 | 92, 93 | eleqtrrdi 2851 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐾)) |
95 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
96 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → 𝑡 = 0) |
97 | 96 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (𝑡 · (𝑓‘0)) = (0 · (𝑓‘0))) |
98 | 96 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (1 − 𝑡) = (1 − 0)) |
99 | | 1m0e1 12103 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
100 | 98, 99 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (1 − 𝑡) = 1) |
101 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → 𝑧 = 𝑠) |
102 | 101 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (𝑓‘𝑧) = (𝑓‘𝑠)) |
103 | 100, 102 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → ((1 − 𝑡) · (𝑓‘𝑧)) = (1 · (𝑓‘𝑠))) |
104 | 97, 103 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
105 | | ovex 7317 |
. . . . . . . . . 10
⊢ ((0
· (𝑓‘0)) + (1
· (𝑓‘𝑠))) ∈ V |
106 | 104, 86, 105 | ovmpoa 7437 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
107 | 95, 16, 106 | sylancl 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
108 | 42 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) ∈ ℂ) |
109 | 108 | mul02d 11182 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘0)) = 0) |
110 | 26 | toponunii 22074 |
. . . . . . . . . . . . 13
⊢ ℂ =
∪ 𝐽 |
111 | 13, 110 | cnf 22406 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶ℂ) |
112 | 60, 111 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ℂ) |
113 | 112 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘𝑠) ∈ ℂ) |
114 | 113 | mulid2d 11002 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘𝑠)) = (𝑓‘𝑠)) |
115 | 109, 114 | oveq12d 7302 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠))) = (0 + (𝑓‘𝑠))) |
116 | 113 | addid2d 11185 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 + (𝑓‘𝑠)) = (𝑓‘𝑠)) |
117 | 107, 115,
116 | 3eqtrd 2783 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = (𝑓‘𝑠)) |
118 | | 1elunit 13211 |
. . . . . . . . 9
⊢ 1 ∈
(0[,]1) |
119 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → 𝑡 = 1) |
120 | 119 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (𝑡 · (𝑓‘0)) = (1 · (𝑓‘0))) |
121 | 119 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (1 − 𝑡) = (1 − 1)) |
122 | | 1m1e0 12054 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
123 | 121, 122 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (1 − 𝑡) = 0) |
124 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → 𝑧 = 𝑠) |
125 | 124 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (𝑓‘𝑧) = (𝑓‘𝑠)) |
126 | 123, 125 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → ((1 − 𝑡) · (𝑓‘𝑧)) = (0 · (𝑓‘𝑠))) |
127 | 120, 126 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
128 | | ovex 7317 |
. . . . . . . . . 10
⊢ ((1
· (𝑓‘0)) + (0
· (𝑓‘𝑠))) ∈ V |
129 | 127, 86, 128 | ovmpoa 7437 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (0[,]1) ∧ 1 ∈
(0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
130 | 95, 118, 129 | sylancl 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
131 | 108 | mulid2d 11002 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘0)) = (𝑓‘0)) |
132 | 113 | mul02d 11182 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘𝑠)) = 0) |
133 | 131, 132 | oveq12d 7302 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠))) = ((𝑓‘0) + 0)) |
134 | 108 | addid1d 11184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (𝑓‘0)) |
135 | | fvex 6796 |
. . . . . . . . . . 11
⊢ (𝑓‘0) ∈
V |
136 | 135 | fvconst2 7088 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (0[,]1) → (((0[,]1)
× {(𝑓‘0)})‘𝑠) = (𝑓‘0)) |
137 | 136 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝑓‘0)})‘𝑠) = (𝑓‘0)) |
138 | 134, 137 | eqtr4d 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (((0[,]1) × {(𝑓‘0)})‘𝑠)) |
139 | 130, 133,
138 | 3eqtrd 2783 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = (((0[,]1) × {(𝑓‘0)})‘𝑠)) |
140 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠) |
141 | 140 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0))) |
142 | 140 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠)) |
143 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑧 = 0) |
144 | 143 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑓‘𝑧) = (𝑓‘0)) |
145 | 142, 144 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓‘𝑧)) = ((1 − 𝑠) · (𝑓‘0))) |
146 | 141, 145 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
147 | | ovex 7317 |
. . . . . . . . . 10
⊢ ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) ∈ V |
148 | 146, 86, 147 | ovmpoa 7437 |
. . . . . . . . 9
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0(𝑧
∈ (0[,]1), 𝑡 ∈
(0[,]1) ↦ ((𝑡
· (𝑓‘0)) + ((1
− 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
149 | 16, 95, 148 | sylancr 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
150 | 30, 95 | sselid 3920 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ) |
151 | | pncan3 11238 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑠 + (1
− 𝑠)) =
1) |
152 | 150, 47, 151 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 + (1 − 𝑠)) = 1) |
153 | 152 | oveq1d 7299 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = (1 · (𝑓‘0))) |
154 | | subcl 11229 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ 𝑠
∈ ℂ) → (1 − 𝑠) ∈ ℂ) |
155 | 47, 150, 154 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈
ℂ) |
156 | 150, 155,
108 | adddird 11009 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
157 | 153, 156,
131 | 3eqtr3d 2787 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = (𝑓‘0)) |
158 | 149, 157 | eqtrd 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = (𝑓‘0)) |
159 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠) |
160 | 159 | oveq1d 7299 |
. . . . . . . . . . 11
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0))) |
161 | 159 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠)) |
162 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑧 = 1) |
163 | 162 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑓‘𝑧) = (𝑓‘1)) |
164 | 161, 163 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓‘𝑧)) = ((1 − 𝑠) · (𝑓‘1))) |
165 | 160, 164 | oveq12d 7302 |
. . . . . . . . . 10
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
166 | | ovex 7317 |
. . . . . . . . . 10
⊢ ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) ∈ V |
167 | 165, 86, 166 | ovmpoa 7437 |
. . . . . . . . 9
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1(𝑧
∈ (0[,]1), 𝑡 ∈
(0[,]1) ↦ ((𝑡
· (𝑓‘0)) + ((1
− 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
168 | 118, 95, 167 | sylancr 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
169 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) = (𝑓‘1)) |
170 | 169 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝑓‘0)) = ((1 − 𝑠) · (𝑓‘1))) |
171 | 170 | oveq2d 7300 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
172 | 157, 171,
169 | 3eqtr3d 2787 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) = (𝑓‘1)) |
173 | 168, 172 | eqtrd 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = (𝑓‘1)) |
174 | 6, 22, 94, 117, 139, 158, 173 | isphtpy2d 24159 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
175 | 174 | ne0d 4270 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅) |
176 | | isphtpc 24166 |
. . . . 5
⊢ (𝑓(
≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}) ↔ (𝑓 ∈ (II Cn 𝐾) ∧ ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅)) |
177 | 6, 22, 175, 176 | syl3anbrc 1342 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)})) |
178 | 177 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
179 | 178 | ralrimiva 3104 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
180 | | issconn 33197 |
. 2
⊢ (𝐾 ∈ SConn ↔ (𝐾 ∈ PConn ∧
∀𝑓 ∈ (II Cn
𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)})))) |
181 | 5, 179, 180 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐾 ∈ SConn) |