Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxsconn Structured version   Visualization version   GIF version

Theorem cvxsconn 32603
Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxsconn (𝜑𝐾 ∈ SConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑡,𝑦,𝐾   𝜑,𝑡,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem cvxsconn
Dummy variables 𝑧 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvxpconn.1 . . 3 (𝜑𝑆 ⊆ ℂ)
2 cvxpconn.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
3 cvxpconn.3 . . 3 𝐽 = (TopOpen‘ℂfld)
4 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
51, 2, 3, 4cvxpconn 32602 . 2 (𝜑𝐾 ∈ PConn)
6 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐾))
7 pconntop 32585 . . . . . . . . . 10 (𝐾 ∈ PConn → 𝐾 ∈ Top)
85, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
98adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ Top)
10 eqid 2798 . . . . . . . . 9 𝐾 = 𝐾
1110toptopon 21522 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
129, 11sylib 221 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 iiuni 23486 . . . . . . . . . 10 (0[,]1) = II
1413, 10cnf 21851 . . . . . . . . 9 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶ 𝐾)
156, 14syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ 𝐾)
16 0elunit 12847 . . . . . . . 8 0 ∈ (0[,]1)
17 ffvelrn 6826 . . . . . . . 8 ((𝑓:(0[,]1)⟶ 𝐾 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝐾)
1815, 16, 17sylancl 589 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝐾)
19 eqid 2798 . . . . . . . 8 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
2019pcoptcl 23626 . . . . . . 7 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑓‘0) ∈ 𝐾) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
2112, 18, 20syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
2221simp1d 1139 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾))
23 iitopon 23484 . . . . . . . . . . 11 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
253dfii3 23488 . . . . . . . . . . . 12 II = (𝐽t (0[,]1))
263cnfldtopon 23388 . . . . . . . . . . . . 13 𝐽 ∈ (TopOn‘ℂ)
2726a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘ℂ))
28 unitssre 12877 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℝ
29 ax-resscn 10583 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3028, 29sstri 3924 . . . . . . . . . . . . 13 (0[,]1) ⊆ ℂ
3130a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (0[,]1) ⊆ ℂ)
3227, 27cnmpt2nd 22274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 𝑡) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3325, 27, 31, 25, 27, 31, 32cnmpt2res 22282 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((II ×t II) Cn 𝐽))
341adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ⊆ ℂ)
35 resttopon 21766 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
3626, 1, 35sylancr 590 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
374, 36eqeltrid 2894 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑆))
38 toponuni 21519 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 = 𝐾)
4039adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 = 𝐾)
4118, 40eleqtrrd 2893 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑆)
4234, 41sseldd 3916 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ℂ)
4324, 24, 27, 42cnmpt2c 22275 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘0)) ∈ ((II ×t II) Cn 𝐽))
443mulcn 23472 . . . . . . . . . . . 12 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4544a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4624, 24, 33, 43, 45cnmpt22f 22280 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑡 · (𝑓‘0))) ∈ ((II ×t II) Cn 𝐽))
47 ax-1cn 10584 . . . . . . . . . . . . . . 15 1 ∈ ℂ
4847a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 1 ∈ ℂ)
4927, 27, 27, 48cnmpt2c 22275 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 1) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
503subcn 23471 . . . . . . . . . . . . . 14 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
5150a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5227, 27, 49, 32, 51cnmpt22f 22280 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5325, 27, 31, 25, 27, 31, 52cnmpt2res 22282 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((II ×t II) Cn 𝐽))
5424, 24cnmpt1st 22273 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑧) ∈ ((II ×t II) Cn II))
553cnfldtop 23389 . . . . . . . . . . . . . 14 𝐽 ∈ Top
56 cnrest2r 21892 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (II Cn (𝐽t 𝑆)) ⊆ (II Cn 𝐽))
5755, 56ax-mp 5 . . . . . . . . . . . . 13 (II Cn (𝐽t 𝑆)) ⊆ (II Cn 𝐽)
584oveq2i 7146 . . . . . . . . . . . . . 14 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
596, 58eleqtrdi 2900 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝐽t 𝑆)))
6057, 59sseldi 3913 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
6124, 24, 54, 60cnmpt21f 22277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓𝑧)) ∈ ((II ×t II) Cn 𝐽))
6224, 24, 53, 61, 45cnmpt22f 22280 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((1 − 𝑡) · (𝑓𝑧))) ∈ ((II ×t II) Cn 𝐽))
633addcn 23470 . . . . . . . . . . 11 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
6463a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6524, 24, 46, 62, 64cnmpt22f 22280 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽))
6641adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘0) ∈ 𝑆)
6715adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑓:(0[,]1)⟶ 𝐾)
68 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑧 ∈ (0[,]1))
6967, 68ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓𝑧) ∈ 𝐾)
7040adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑆 = 𝐾)
7169, 70eleqtrrd 2893 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓𝑧) ∈ 𝑆)
7223exp2 1351 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
7372imp42 430 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7473an32s 651 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (0[,]1)) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7574ralrimivva 3156 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7675ad2ant2rl 748 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
77 oveq2 7143 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓‘0) → (𝑡 · 𝑥) = (𝑡 · (𝑓‘0)))
7877oveq1d 7150 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓‘0) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)))
7978eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓‘0) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))
80 oveq2 7143 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑓𝑧)))
8180oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))
8281eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑧) → (((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆))
8379, 82rspc2va 3582 . . . . . . . . . . . . . 14 ((((𝑓‘0) ∈ 𝑆 ∧ (𝑓𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
8466, 71, 76, 83syl21anc 836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
8584ralrimivva 3156 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
86 eqid 2798 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) = (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))
8786fmpo 7748 . . . . . . . . . . . 12 (∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆 ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))):((0[,]1) × (0[,]1))⟶𝑆)
8885, 87sylib 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))):((0[,]1) × (0[,]1))⟶𝑆)
8988frnd 6494 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ⊆ 𝑆)
90 cnrest2 21891 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆))))
9127, 89, 34, 90syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆))))
9265, 91mpbid 235 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆)))
934oveq2i 7146 . . . . . . . 8 ((II ×t II) Cn 𝐾) = ((II ×t II) Cn (𝐽t 𝑆))
9492, 93eleqtrrdi 2901 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐾))
95 simpr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
96 simpr 488 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → 𝑡 = 0)
9796oveq1d 7150 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 0) → (𝑡 · (𝑓‘0)) = (0 · (𝑓‘0)))
9896oveq2d 7151 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 0) → (1 − 𝑡) = (1 − 0))
99 1m0e1 11746 . . . . . . . . . . . . 13 (1 − 0) = 1
10098, 99eqtrdi 2849 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → (1 − 𝑡) = 1)
101 simpl 486 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 0) → 𝑧 = 𝑠)
102101fveq2d 6649 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → (𝑓𝑧) = (𝑓𝑠))
103100, 102oveq12d 7153 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 0) → ((1 − 𝑡) · (𝑓𝑧)) = (1 · (𝑓𝑠)))
10497, 103oveq12d 7153 . . . . . . . . . 10 ((𝑧 = 𝑠𝑡 = 0) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
105 ovex 7168 . . . . . . . . . 10 ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))) ∈ V
106104, 86, 105ovmpoa 7284 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
10795, 16, 106sylancl 589 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
10842adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) ∈ ℂ)
109108mul02d 10827 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘0)) = 0)
11026toponunii 21521 . . . . . . . . . . . . 13 ℂ = 𝐽
11113, 110cnf 21851 . . . . . . . . . . . 12 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶ℂ)
11260, 111syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ℂ)
113112ffvelrnda 6828 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓𝑠) ∈ ℂ)
114113mulid2d 10648 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓𝑠)) = (𝑓𝑠))
115109, 114oveq12d 7153 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))) = (0 + (𝑓𝑠)))
116113addid2d 10830 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 + (𝑓𝑠)) = (𝑓𝑠))
117107, 115, 1163eqtrd 2837 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = (𝑓𝑠))
118 1elunit 12848 . . . . . . . . 9 1 ∈ (0[,]1)
119 simpr 488 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → 𝑡 = 1)
120119oveq1d 7150 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 1) → (𝑡 · (𝑓‘0)) = (1 · (𝑓‘0)))
121119oveq2d 7151 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 1) → (1 − 𝑡) = (1 − 1))
122 1m1e0 11697 . . . . . . . . . . . . 13 (1 − 1) = 0
123121, 122eqtrdi 2849 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → (1 − 𝑡) = 0)
124 simpl 486 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 1) → 𝑧 = 𝑠)
125124fveq2d 6649 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → (𝑓𝑧) = (𝑓𝑠))
126123, 125oveq12d 7153 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 1) → ((1 − 𝑡) · (𝑓𝑧)) = (0 · (𝑓𝑠)))
127120, 126oveq12d 7153 . . . . . . . . . 10 ((𝑧 = 𝑠𝑡 = 1) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
128 ovex 7168 . . . . . . . . . 10 ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))) ∈ V
129127, 86, 128ovmpoa 7284 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
13095, 118, 129sylancl 589 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
131108mulid2d 10648 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘0)) = (𝑓‘0))
132113mul02d 10827 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓𝑠)) = 0)
133131, 132oveq12d 7153 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))) = ((𝑓‘0) + 0))
134108addid1d 10829 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (𝑓‘0))
135 fvex 6658 . . . . . . . . . . 11 (𝑓‘0) ∈ V
136135fvconst2 6943 . . . . . . . . . 10 (𝑠 ∈ (0[,]1) → (((0[,]1) × {(𝑓‘0)})‘𝑠) = (𝑓‘0))
137136adantl 485 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝑓‘0)})‘𝑠) = (𝑓‘0))
138134, 137eqtr4d 2836 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (((0[,]1) × {(𝑓‘0)})‘𝑠))
139130, 133, 1383eqtrd 2837 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = (((0[,]1) × {(𝑓‘0)})‘𝑠))
140 simpr 488 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠)
141140oveq1d 7150 . . . . . . . . . . 11 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0)))
142140oveq2d 7151 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠))
143 simpl 486 . . . . . . . . . . . . 13 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑧 = 0)
144143fveq2d 6649 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑓𝑧) = (𝑓‘0))
145142, 144oveq12d 7153 . . . . . . . . . . 11 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓𝑧)) = ((1 − 𝑠) · (𝑓‘0)))
146141, 145oveq12d 7153 . . . . . . . . . 10 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
147 ovex 7168 . . . . . . . . . 10 ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) ∈ V
148146, 86, 147ovmpoa 7284 . . . . . . . . 9 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
14916, 95, 148sylancr 590 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
15030, 95sseldi 3913 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
151 pncan3 10883 . . . . . . . . . . 11 ((𝑠 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑠 + (1 − 𝑠)) = 1)
152150, 47, 151sylancl 589 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 + (1 − 𝑠)) = 1)
153152oveq1d 7150 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = (1 · (𝑓‘0)))
154 subcl 10874 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
15547, 150, 154sylancr 590 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
156150, 155, 108adddird 10655 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
157153, 156, 1313eqtr3d 2841 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = (𝑓‘0))
158149, 157eqtrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = (𝑓‘0))
159 simpr 488 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠)
160159oveq1d 7150 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0)))
161159oveq2d 7151 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠))
162 simpl 486 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑧 = 1)
163162fveq2d 6649 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑓𝑧) = (𝑓‘1))
164161, 163oveq12d 7153 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓𝑧)) = ((1 − 𝑠) · (𝑓‘1)))
165160, 164oveq12d 7153 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
166 ovex 7168 . . . . . . . . . 10 ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) ∈ V
167165, 86, 166ovmpoa 7284 . . . . . . . . 9 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
168118, 95, 167sylancr 590 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
169 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) = (𝑓‘1))
170169oveq2d 7151 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝑓‘0)) = ((1 − 𝑠) · (𝑓‘1)))
171170oveq2d 7151 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
172157, 171, 1693eqtr3d 2841 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) = (𝑓‘1))
173168, 172eqtrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = (𝑓‘1))
1746, 22, 94, 117, 139, 158, 173isphtpy2d 23592 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})))
175174ne0d 4251 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅)
176 isphtpc 23599 . . . . 5 (𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}) ↔ (𝑓 ∈ (II Cn 𝐾) ∧ ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅))
1776, 22, 175, 176syl3anbrc 1340 . . . 4 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}))
178177expr 460 . . 3 ((𝜑𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)})))
179178ralrimiva 3149 . 2 (𝜑 → ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)})))
180 issconn 32586 . 2 (𝐾 ∈ SConn ↔ (𝐾 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}))))
1815, 179, 180sylanbrc 586 1 (𝜑𝐾 ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881  c0 4243  {csn 4525   cuni 4800   class class class wbr 5030   × cxp 5517  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  [,]cicc 12729  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  Topctop 21498  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165  IIcii 23480  PHtpycphtpy 23573  phcphtpc 23574  PConncpconn 32579  SConncsconn 32580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-ii 23482  df-htpy 23575  df-phtpy 23576  df-phtpc 23597  df-pconn 32581  df-sconn 32582
This theorem is referenced by:  blsconn  32604  resconn  32606
  Copyright terms: Public domain W3C validator