Step | Hyp | Ref
| Expression |
1 | | cvxpconn.1 |
. . 3
β’ (π β π β β) |
2 | | cvxpconn.2 |
. . 3
β’ ((π β§ (π₯ β π β§ π¦ β π β§ π‘ β (0[,]1))) β ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π) |
3 | | cvxpconn.3 |
. . 3
β’ π½ =
(TopOpenββfld) |
4 | | cvxpconn.4 |
. . 3
β’ πΎ = (π½ βΎt π) |
5 | 1, 2, 3, 4 | cvxpconn 34688 |
. 2
β’ (π β πΎ β PConn) |
6 | | simprl 768 |
. . . . 5
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π β (II Cn πΎ)) |
7 | | pconntop 34671 |
. . . . . . . . . 10
β’ (πΎ β PConn β πΎ β Top) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
β’ (π β πΎ β Top) |
9 | 8 | adantr 480 |
. . . . . . . 8
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β πΎ β Top) |
10 | | toptopon2 22730 |
. . . . . . . 8
β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) |
11 | 9, 10 | sylib 217 |
. . . . . . 7
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β πΎ β (TopOnββͺ πΎ)) |
12 | | iiuni 24711 |
. . . . . . . . . 10
β’ (0[,]1) =
βͺ II |
13 | | eqid 2724 |
. . . . . . . . . 10
β’ βͺ πΎ =
βͺ πΎ |
14 | 12, 13 | cnf 23060 |
. . . . . . . . 9
β’ (π β (II Cn πΎ) β π:(0[,]1)βΆβͺ
πΎ) |
15 | 6, 14 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π:(0[,]1)βΆβͺ
πΎ) |
16 | | 0elunit 13442 |
. . . . . . . 8
β’ 0 β
(0[,]1) |
17 | | ffvelcdm 7073 |
. . . . . . . 8
β’ ((π:(0[,]1)βΆβͺ πΎ
β§ 0 β (0[,]1)) β (πβ0) β βͺ
πΎ) |
18 | 15, 16, 17 | sylancl 585 |
. . . . . . 7
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (πβ0) β βͺ
πΎ) |
19 | | eqid 2724 |
. . . . . . . 8
β’ ((0[,]1)
Γ {(πβ0)}) =
((0[,]1) Γ {(πβ0)}) |
20 | 19 | pcoptcl 24858 |
. . . . . . 7
β’ ((πΎ β (TopOnββͺ πΎ)
β§ (πβ0) β
βͺ πΎ) β (((0[,]1) Γ {(πβ0)}) β (II Cn πΎ) β§ (((0[,]1) Γ
{(πβ0)})β0) =
(πβ0) β§ (((0[,]1)
Γ {(πβ0)})β1) = (πβ0))) |
21 | 11, 18, 20 | syl2anc 583 |
. . . . . 6
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (((0[,]1) Γ {(πβ0)}) β (II Cn πΎ) β§ (((0[,]1) Γ
{(πβ0)})β0) =
(πβ0) β§ (((0[,]1)
Γ {(πβ0)})β1) = (πβ0))) |
22 | 21 | simp1d 1139 |
. . . . 5
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β ((0[,]1) Γ {(πβ0)}) β (II Cn πΎ)) |
23 | | iitopon 24709 |
. . . . . . . . . . 11
β’ II β
(TopOnβ(0[,]1)) |
24 | 23 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β II β
(TopOnβ(0[,]1))) |
25 | 3 | dfii3 24713 |
. . . . . . . . . . . 12
β’ II =
(π½ βΎt
(0[,]1)) |
26 | 3 | cnfldtopon 24609 |
. . . . . . . . . . . . 13
β’ π½ β
(TopOnββ) |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π½ β
(TopOnββ)) |
28 | | unitsscn 13473 |
. . . . . . . . . . . . 13
β’ (0[,]1)
β β |
29 | 28 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (0[,]1) β
β) |
30 | 27, 27 | cnmpt2nd 23483 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β β, π‘ β β β¦ π‘) β ((π½ Γt π½) Cn π½)) |
31 | 25, 27, 29, 25, 27, 29, 30 | cnmpt2res 23491 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ π‘) β ((II Γt II) Cn
π½)) |
32 | 1 | adantr 480 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π β β) |
33 | | resttopon 22975 |
. . . . . . . . . . . . . . . . . 18
β’ ((π½ β (TopOnββ)
β§ π β β)
β (π½
βΎt π)
β (TopOnβπ)) |
34 | 26, 1, 33 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π½ βΎt π) β (TopOnβπ)) |
35 | 4, 34 | eqeltrid 2829 |
. . . . . . . . . . . . . . . 16
β’ (π β πΎ β (TopOnβπ)) |
36 | | toponuni 22726 |
. . . . . . . . . . . . . . . 16
β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π = βͺ πΎ) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π = βͺ πΎ) |
39 | 18, 38 | eleqtrrd 2828 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (πβ0) β π) |
40 | 32, 39 | sseldd 3975 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (πβ0) β β) |
41 | 24, 24, 27, 40 | cnmpt2c 23484 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ (πβ0)) β ((II Γt
II) Cn π½)) |
42 | 3 | mpomulcn 24695 |
. . . . . . . . . . . 12
β’ (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((π½ Γt π½) Cn π½) |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π’ β β, π£ β β β¦ (π’ Β· π£)) β ((π½ Γt π½) Cn π½)) |
44 | | oveq12 7410 |
. . . . . . . . . . 11
β’ ((π’ = π‘ β§ π£ = (πβ0)) β (π’ Β· π£) = (π‘ Β· (πβ0))) |
45 | 24, 24, 31, 41, 27, 27, 43, 44 | cnmpt22 23488 |
. . . . . . . . . 10
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ (π‘ Β· (πβ0))) β ((II Γt
II) Cn π½)) |
46 | | ax-1cn 11163 |
. . . . . . . . . . . . . 14
β’ 1 β
β |
47 | 46 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β 1 β
β) |
48 | 24, 24, 27, 47 | cnmpt2c 23484 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ 1) β ((II
Γt II) Cn π½)) |
49 | 3 | subcn 24692 |
. . . . . . . . . . . . 13
β’ β
β ((π½
Γt π½) Cn
π½) |
50 | 49 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β β β ((π½ Γt π½) Cn π½)) |
51 | 24, 24, 48, 31, 50 | cnmpt22f 23489 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ (1 β π‘)) β ((II
Γt II) Cn π½)) |
52 | 24, 24 | cnmpt1st 23482 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ π§) β ((II Γt II) Cn
II)) |
53 | 3 | cnfldtop 24610 |
. . . . . . . . . . . . . 14
β’ π½ β Top |
54 | | cnrest2r 23101 |
. . . . . . . . . . . . . 14
β’ (π½ β Top β (II Cn (π½ βΎt π)) β (II Cn π½)) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . 13
β’ (II Cn
(π½ βΎt
π)) β (II Cn π½) |
56 | 4 | oveq2i 7412 |
. . . . . . . . . . . . . 14
β’ (II Cn
πΎ) = (II Cn (π½ βΎt π)) |
57 | 6, 56 | eleqtrdi 2835 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π β (II Cn (π½ βΎt π))) |
58 | 55, 57 | sselid 3972 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π β (II Cn π½)) |
59 | 24, 24, 52, 58 | cnmpt21f 23486 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ (πβπ§)) β ((II Γt II) Cn
π½)) |
60 | | oveq12 7410 |
. . . . . . . . . . 11
β’ ((π’ = (1 β π‘) β§ π£ = (πβπ§)) β (π’ Β· π£) = ((1 β π‘) Β· (πβπ§))) |
61 | 24, 24, 51, 59, 27, 27, 43, 60 | cnmpt22 23488 |
. . . . . . . . . 10
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((1 β π‘) Β· (πβπ§))) β ((II Γt II) Cn
π½)) |
62 | 3 | addcn 24691 |
. . . . . . . . . . 11
β’ + β
((π½ Γt
π½) Cn π½) |
63 | 62 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β + β ((π½ Γt π½) Cn π½)) |
64 | 24, 24, 45, 61, 63 | cnmpt22f 23489 |
. . . . . . . . 9
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
π½)) |
65 | | oveq2 7409 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = (πβ0) β (π‘ Β· π₯) = (π‘ Β· (πβ0))) |
66 | 65 | oveq1d 7416 |
. . . . . . . . . . . . . . 15
β’ (π₯ = (πβ0) β ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) = ((π‘ Β· (πβ0)) + ((1 β π‘) Β· π¦))) |
67 | 66 | eleq1d 2810 |
. . . . . . . . . . . . . 14
β’ (π₯ = (πβ0) β (((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· π¦)) β π)) |
68 | | oveq2 7409 |
. . . . . . . . . . . . . . . 16
β’ (π¦ = (πβπ§) β ((1 β π‘) Β· π¦) = ((1 β π‘) Β· (πβπ§))) |
69 | 68 | oveq2d 7417 |
. . . . . . . . . . . . . . 15
β’ (π¦ = (πβπ§) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· π¦)) = ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) |
70 | 69 | eleq1d 2810 |
. . . . . . . . . . . . . 14
β’ (π¦ = (πβπ§) β (((π‘ Β· (πβ0)) + ((1 β π‘) Β· π¦)) β π β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) β π)) |
71 | 2 | 3exp2 1351 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π₯ β π β (π¦ β π β (π‘ β (0[,]1) β ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π)))) |
72 | 71 | imp42 426 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π₯ β π β§ π¦ β π)) β§ π‘ β (0[,]1)) β ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π) |
73 | 72 | an32s 649 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π‘ β (0[,]1)) β§ (π₯ β π β§ π¦ β π)) β ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π) |
74 | 73 | ralrimivva 3192 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π‘ β (0[,]1)) β βπ₯ β π βπ¦ β π ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π) |
75 | 74 | ad2ant2rl 746 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β βπ₯ β π βπ¦ β π ((π‘ Β· π₯) + ((1 β π‘) Β· π¦)) β π) |
76 | 39 | adantr 480 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β (πβ0) β π) |
77 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β π:(0[,]1)βΆβͺ
πΎ) |
78 | | simprl 768 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β π§ β (0[,]1)) |
79 | 77, 78 | ffvelcdmd 7077 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β (πβπ§) β βͺ πΎ) |
80 | 38 | adantr 480 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β π = βͺ πΎ) |
81 | 79, 80 | eleqtrrd 2828 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β (πβπ§) β π) |
82 | 67, 70, 75, 76, 81 | rspc2dv 3618 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ (π§ β (0[,]1) β§ π‘ β (0[,]1))) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) β π) |
83 | 82 | ralrimivva 3192 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β βπ§ β (0[,]1)βπ‘ β (0[,]1)((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) β π) |
84 | | eqid 2724 |
. . . . . . . . . . . . 13
β’ (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) = (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) |
85 | 84 | fmpo 8047 |
. . . . . . . . . . . 12
β’
(βπ§ β
(0[,]1)βπ‘ β
(0[,]1)((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) β π β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))):((0[,]1) Γ (0[,]1))βΆπ) |
86 | 83, 85 | sylib 217 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))):((0[,]1) Γ (0[,]1))βΆπ) |
87 | 86 | frnd 6715 |
. . . . . . . . . 10
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β ran (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β π) |
88 | | cnrest2 23100 |
. . . . . . . . . 10
β’ ((π½ β (TopOnββ)
β§ ran (π§ β
(0[,]1), π‘ β (0[,]1)
β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β π β§ π β β) β ((π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
π½) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
(π½ βΎt
π)))) |
89 | 26, 87, 32, 88 | mp3an2i 1462 |
. . . . . . . . 9
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β ((π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
π½) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
(π½ βΎt
π)))) |
90 | 64, 89 | mpbid 231 |
. . . . . . . 8
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
(π½ βΎt
π))) |
91 | 4 | oveq2i 7412 |
. . . . . . . 8
β’ ((II
Γt II) Cn πΎ) = ((II Γt II) Cn (π½ βΎt π)) |
92 | 90, 91 | eleqtrrdi 2836 |
. . . . . . 7
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β ((II Γt II) Cn
πΎ)) |
93 | | simpr 484 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β π β (0[,]1)) |
94 | | simpr 484 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 0) β π‘ = 0) |
95 | 94 | oveq1d 7416 |
. . . . . . . . . . 11
β’ ((π§ = π β§ π‘ = 0) β (π‘ Β· (πβ0)) = (0 Β· (πβ0))) |
96 | 94 | oveq2d 7417 |
. . . . . . . . . . . . 13
β’ ((π§ = π β§ π‘ = 0) β (1 β π‘) = (1 β 0)) |
97 | | 1m0e1 12329 |
. . . . . . . . . . . . 13
β’ (1
β 0) = 1 |
98 | 96, 97 | eqtrdi 2780 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 0) β (1 β π‘) = 1) |
99 | | simpl 482 |
. . . . . . . . . . . . 13
β’ ((π§ = π β§ π‘ = 0) β π§ = π ) |
100 | 99 | fveq2d 6885 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 0) β (πβπ§) = (πβπ )) |
101 | 98, 100 | oveq12d 7419 |
. . . . . . . . . . 11
β’ ((π§ = π β§ π‘ = 0) β ((1 β π‘) Β· (πβπ§)) = (1 Β· (πβπ ))) |
102 | 95, 101 | oveq12d 7419 |
. . . . . . . . . 10
β’ ((π§ = π β§ π‘ = 0) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) = ((0 Β· (πβ0)) + (1 Β· (πβπ )))) |
103 | | ovex 7434 |
. . . . . . . . . 10
β’ ((0
Β· (πβ0)) + (1
Β· (πβπ ))) β V |
104 | 102, 84, 103 | ovmpoa 7555 |
. . . . . . . . 9
β’ ((π β (0[,]1) β§ 0 β
(0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))0) = ((0 Β· (πβ0)) + (1 Β· (πβπ )))) |
105 | 93, 16, 104 | sylancl 585 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))0) = ((0 Β· (πβ0)) + (1 Β· (πβπ )))) |
106 | 40 | adantr 480 |
. . . . . . . . . 10
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (πβ0) β β) |
107 | 106 | mul02d 11408 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (0 Β· (πβ0)) = 0) |
108 | 26 | toponunii 22728 |
. . . . . . . . . . . . 13
β’ β =
βͺ π½ |
109 | 12, 108 | cnf 23060 |
. . . . . . . . . . . 12
β’ (π β (II Cn π½) β π:(0[,]1)βΆβ) |
110 | 58, 109 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π:(0[,]1)βΆβ) |
111 | 110 | ffvelcdmda 7076 |
. . . . . . . . . 10
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (πβπ ) β β) |
112 | 111 | mullidd 11228 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (1 Β· (πβπ )) = (πβπ )) |
113 | 107, 112 | oveq12d 7419 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((0 Β· (πβ0)) + (1 Β· (πβπ ))) = (0 + (πβπ ))) |
114 | 111 | addlidd 11411 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (0 + (πβπ )) = (πβπ )) |
115 | 105, 113,
114 | 3eqtrd 2768 |
. . . . . . 7
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))0) = (πβπ )) |
116 | | 1elunit 13443 |
. . . . . . . . 9
β’ 1 β
(0[,]1) |
117 | | simpr 484 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 1) β π‘ = 1) |
118 | 117 | oveq1d 7416 |
. . . . . . . . . . 11
β’ ((π§ = π β§ π‘ = 1) β (π‘ Β· (πβ0)) = (1 Β· (πβ0))) |
119 | 117 | oveq2d 7417 |
. . . . . . . . . . . . 13
β’ ((π§ = π β§ π‘ = 1) β (1 β π‘) = (1 β 1)) |
120 | | 1m1e0 12280 |
. . . . . . . . . . . . 13
β’ (1
β 1) = 0 |
121 | 119, 120 | eqtrdi 2780 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 1) β (1 β π‘) = 0) |
122 | | simpl 482 |
. . . . . . . . . . . . 13
β’ ((π§ = π β§ π‘ = 1) β π§ = π ) |
123 | 122 | fveq2d 6885 |
. . . . . . . . . . . 12
β’ ((π§ = π β§ π‘ = 1) β (πβπ§) = (πβπ )) |
124 | 121, 123 | oveq12d 7419 |
. . . . . . . . . . 11
β’ ((π§ = π β§ π‘ = 1) β ((1 β π‘) Β· (πβπ§)) = (0 Β· (πβπ ))) |
125 | 118, 124 | oveq12d 7419 |
. . . . . . . . . 10
β’ ((π§ = π β§ π‘ = 1) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) = ((1 Β· (πβ0)) + (0 Β· (πβπ )))) |
126 | | ovex 7434 |
. . . . . . . . . 10
β’ ((1
Β· (πβ0)) + (0
Β· (πβπ ))) β V |
127 | 125, 84, 126 | ovmpoa 7555 |
. . . . . . . . 9
β’ ((π β (0[,]1) β§ 1 β
(0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))1) = ((1 Β· (πβ0)) + (0 Β· (πβπ )))) |
128 | 93, 116, 127 | sylancl 585 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))1) = ((1 Β· (πβ0)) + (0 Β· (πβπ )))) |
129 | 106 | mullidd 11228 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (1 Β· (πβ0)) = (πβ0)) |
130 | 111 | mul02d 11408 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (0 Β· (πβπ )) = 0) |
131 | 129, 130 | oveq12d 7419 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((1 Β· (πβ0)) + (0 Β· (πβπ ))) = ((πβ0) + 0)) |
132 | 106 | addridd 11410 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((πβ0) + 0) = (πβ0)) |
133 | | fvex 6894 |
. . . . . . . . . . 11
β’ (πβ0) β
V |
134 | 133 | fvconst2 7197 |
. . . . . . . . . 10
β’ (π β (0[,]1) β (((0[,]1)
Γ {(πβ0)})βπ ) = (πβ0)) |
135 | 134 | adantl 481 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (((0[,]1) Γ
{(πβ0)})βπ ) = (πβ0)) |
136 | 132, 135 | eqtr4d 2767 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((πβ0) + 0) = (((0[,]1) Γ {(πβ0)})βπ )) |
137 | 128, 131,
136 | 3eqtrd 2768 |
. . . . . . 7
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (π (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))1) = (((0[,]1) Γ {(πβ0)})βπ )) |
138 | | simpr 484 |
. . . . . . . . . . . 12
β’ ((π§ = 0 β§ π‘ = π ) β π‘ = π ) |
139 | 138 | oveq1d 7416 |
. . . . . . . . . . 11
β’ ((π§ = 0 β§ π‘ = π ) β (π‘ Β· (πβ0)) = (π Β· (πβ0))) |
140 | 138 | oveq2d 7417 |
. . . . . . . . . . . 12
β’ ((π§ = 0 β§ π‘ = π ) β (1 β π‘) = (1 β π )) |
141 | | simpl 482 |
. . . . . . . . . . . . 13
β’ ((π§ = 0 β§ π‘ = π ) β π§ = 0) |
142 | 141 | fveq2d 6885 |
. . . . . . . . . . . 12
β’ ((π§ = 0 β§ π‘ = π ) β (πβπ§) = (πβ0)) |
143 | 140, 142 | oveq12d 7419 |
. . . . . . . . . . 11
β’ ((π§ = 0 β§ π‘ = π ) β ((1 β π‘) Β· (πβπ§)) = ((1 β π ) Β· (πβ0))) |
144 | 139, 143 | oveq12d 7419 |
. . . . . . . . . 10
β’ ((π§ = 0 β§ π‘ = π ) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0)))) |
145 | | ovex 7434 |
. . . . . . . . . 10
β’ ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0))) β V |
146 | 144, 84, 145 | ovmpoa 7555 |
. . . . . . . . 9
β’ ((0
β (0[,]1) β§ π
β (0[,]1)) β (0(π§
β (0[,]1), π‘ β
(0[,]1) β¦ ((π‘
Β· (πβ0)) + ((1
β π‘) Β· (πβπ§))))π ) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0)))) |
147 | 16, 93, 146 | sylancr 586 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (0(π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))π ) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0)))) |
148 | 28, 93 | sselid 3972 |
. . . . . . . . . . 11
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β π β β) |
149 | | pncan3 11464 |
. . . . . . . . . . 11
β’ ((π β β β§ 1 β
β) β (π + (1
β π )) =
1) |
150 | 148, 46, 149 | sylancl 585 |
. . . . . . . . . 10
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (π + (1 β π )) = 1) |
151 | 150 | oveq1d 7416 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((π + (1 β π )) Β· (πβ0)) = (1 Β· (πβ0))) |
152 | | subcl 11455 |
. . . . . . . . . . 11
β’ ((1
β β β§ π
β β) β (1 β π ) β β) |
153 | 46, 148, 152 | sylancr 586 |
. . . . . . . . . 10
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (1 β π ) β
β) |
154 | 148, 153,
106 | adddird 11235 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((π + (1 β π )) Β· (πβ0)) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0)))) |
155 | 151, 154,
129 | 3eqtr3d 2772 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0))) = (πβ0)) |
156 | 147, 155 | eqtrd 2764 |
. . . . . . 7
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (0(π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))π ) = (πβ0)) |
157 | | simpr 484 |
. . . . . . . . . . . 12
β’ ((π§ = 1 β§ π‘ = π ) β π‘ = π ) |
158 | 157 | oveq1d 7416 |
. . . . . . . . . . 11
β’ ((π§ = 1 β§ π‘ = π ) β (π‘ Β· (πβ0)) = (π Β· (πβ0))) |
159 | 157 | oveq2d 7417 |
. . . . . . . . . . . 12
β’ ((π§ = 1 β§ π‘ = π ) β (1 β π‘) = (1 β π )) |
160 | | simpl 482 |
. . . . . . . . . . . . 13
β’ ((π§ = 1 β§ π‘ = π ) β π§ = 1) |
161 | 160 | fveq2d 6885 |
. . . . . . . . . . . 12
β’ ((π§ = 1 β§ π‘ = π ) β (πβπ§) = (πβ1)) |
162 | 159, 161 | oveq12d 7419 |
. . . . . . . . . . 11
β’ ((π§ = 1 β§ π‘ = π ) β ((1 β π‘) Β· (πβπ§)) = ((1 β π ) Β· (πβ1))) |
163 | 158, 162 | oveq12d 7419 |
. . . . . . . . . 10
β’ ((π§ = 1 β§ π‘ = π ) β ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1)))) |
164 | | ovex 7434 |
. . . . . . . . . 10
β’ ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1))) β V |
165 | 163, 84, 164 | ovmpoa 7555 |
. . . . . . . . 9
β’ ((1
β (0[,]1) β§ π
β (0[,]1)) β (1(π§
β (0[,]1), π‘ β
(0[,]1) β¦ ((π‘
Β· (πβ0)) + ((1
β π‘) Β· (πβπ§))))π ) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1)))) |
166 | 116, 93, 165 | sylancr 586 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (1(π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))π ) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1)))) |
167 | | simplrr 775 |
. . . . . . . . . . 11
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (πβ0) = (πβ1)) |
168 | 167 | oveq2d 7417 |
. . . . . . . . . 10
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((1 β π ) Β· (πβ0)) = ((1 β π ) Β· (πβ1))) |
169 | 168 | oveq2d 7417 |
. . . . . . . . 9
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((π Β· (πβ0)) + ((1 β π ) Β· (πβ0))) = ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1)))) |
170 | 155, 169,
167 | 3eqtr3d 2772 |
. . . . . . . 8
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β ((π Β· (πβ0)) + ((1 β π ) Β· (πβ1))) = (πβ1)) |
171 | 166, 170 | eqtrd 2764 |
. . . . . . 7
β’ (((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β§ π β (0[,]1)) β (1(π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§))))π ) = (πβ1)) |
172 | 6, 22, 92, 115, 137, 156, 171 | isphtpy2d 24823 |
. . . . . 6
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π§ β (0[,]1), π‘ β (0[,]1) β¦ ((π‘ Β· (πβ0)) + ((1 β π‘) Β· (πβπ§)))) β (π(PHtpyβπΎ)((0[,]1) Γ {(πβ0)}))) |
173 | 172 | ne0d 4327 |
. . . . 5
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β (π(PHtpyβπΎ)((0[,]1) Γ {(πβ0)})) β β
) |
174 | | isphtpc 24830 |
. . . . 5
β’ (π(
βphβπΎ)((0[,]1) Γ {(πβ0)}) β (π β (II Cn πΎ) β§ ((0[,]1) Γ {(πβ0)}) β (II Cn πΎ) β§ (π(PHtpyβπΎ)((0[,]1) Γ {(πβ0)})) β β
)) |
175 | 6, 22, 173, 174 | syl3anbrc 1340 |
. . . 4
β’ ((π β§ (π β (II Cn πΎ) β§ (πβ0) = (πβ1))) β π( βphβπΎ)((0[,]1) Γ {(πβ0)})) |
176 | 175 | expr 456 |
. . 3
β’ ((π β§ π β (II Cn πΎ)) β ((πβ0) = (πβ1) β π( βphβπΎ)((0[,]1) Γ {(πβ0)}))) |
177 | 176 | ralrimiva 3138 |
. 2
β’ (π β βπ β (II Cn πΎ)((πβ0) = (πβ1) β π( βphβπΎ)((0[,]1) Γ {(πβ0)}))) |
178 | | issconn 34672 |
. 2
β’ (πΎ β SConn β (πΎ β PConn β§
βπ β (II Cn
πΎ)((πβ0) = (πβ1) β π( βphβπΎ)((0[,]1) Γ {(πβ0)})))) |
179 | 5, 177, 178 | sylanbrc 582 |
1
β’ (π β πΎ β SConn) |