Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxsconn Structured version   Visualization version   GIF version

Theorem cvxsconn 32490
Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpconn.1 (𝜑𝑆 ⊆ ℂ)
cvxpconn.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
cvxpconn.3 𝐽 = (TopOpen‘ℂfld)
cvxpconn.4 𝐾 = (𝐽t 𝑆)
Assertion
Ref Expression
cvxsconn (𝜑𝐾 ∈ SConn)
Distinct variable groups:   𝑡,𝐽   𝑥,𝑡,𝑦,𝐾   𝜑,𝑡,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem cvxsconn
Dummy variables 𝑧 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvxpconn.1 . . 3 (𝜑𝑆 ⊆ ℂ)
2 cvxpconn.2 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
3 cvxpconn.3 . . 3 𝐽 = (TopOpen‘ℂfld)
4 cvxpconn.4 . . 3 𝐾 = (𝐽t 𝑆)
51, 2, 3, 4cvxpconn 32489 . 2 (𝜑𝐾 ∈ PConn)
6 simprl 769 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐾))
7 pconntop 32472 . . . . . . . . . 10 (𝐾 ∈ PConn → 𝐾 ∈ Top)
85, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
98adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ Top)
10 eqid 2821 . . . . . . . . 9 𝐾 = 𝐾
1110toptopon 21524 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
129, 11sylib 220 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ (TopOn‘ 𝐾))
13 iiuni 23488 . . . . . . . . . 10 (0[,]1) = II
1413, 10cnf 21853 . . . . . . . . 9 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶ 𝐾)
156, 14syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ 𝐾)
16 0elunit 12854 . . . . . . . 8 0 ∈ (0[,]1)
17 ffvelrn 6848 . . . . . . . 8 ((𝑓:(0[,]1)⟶ 𝐾 ∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ 𝐾)
1815, 16, 17sylancl 588 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝐾)
19 eqid 2821 . . . . . . . 8 ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝑓‘0)})
2019pcoptcl 23624 . . . . . . 7 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑓‘0) ∈ 𝐾) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
2112, 18, 20syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) × {(𝑓‘0)})‘0) = (𝑓‘0) ∧ (((0[,]1) × {(𝑓‘0)})‘1) = (𝑓‘0)))
2221simp1d 1138 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾))
23 iitopon 23486 . . . . . . . . . . 11 II ∈ (TopOn‘(0[,]1))
2423a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈ (TopOn‘(0[,]1)))
253dfii3 23490 . . . . . . . . . . . 12 II = (𝐽t (0[,]1))
263cnfldtopon 23390 . . . . . . . . . . . . 13 𝐽 ∈ (TopOn‘ℂ)
2726a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈ (TopOn‘ℂ))
28 unitssre 12884 . . . . . . . . . . . . . 14 (0[,]1) ⊆ ℝ
29 ax-resscn 10593 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3028, 29sstri 3975 . . . . . . . . . . . . 13 (0[,]1) ⊆ ℂ
3130a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (0[,]1) ⊆ ℂ)
3227, 27cnmpt2nd 22276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 𝑡) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3325, 27, 31, 25, 27, 31, 32cnmpt2res 22284 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((II ×t II) Cn 𝐽))
341adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ⊆ ℂ)
35 resttopon 21768 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
3626, 1, 35sylancr 589 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
374, 36eqeltrid 2917 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑆))
38 toponuni 21521 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = 𝐾)
3937, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 = 𝐾)
4039adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 = 𝐾)
4118, 40eleqtrrd 2916 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑆)
4234, 41sseldd 3967 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ℂ)
4324, 24, 27, 42cnmpt2c 22277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘0)) ∈ ((II ×t II) Cn 𝐽))
443mulcn 23474 . . . . . . . . . . . 12 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4544a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4624, 24, 33, 43, 45cnmpt22f 22282 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑡 · (𝑓‘0))) ∈ ((II ×t II) Cn 𝐽))
47 ax-1cn 10594 . . . . . . . . . . . . . . 15 1 ∈ ℂ
4847a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 1 ∈ ℂ)
4927, 27, 27, 48cnmpt2c 22277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 1) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
503subcn 23473 . . . . . . . . . . . . . 14 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
5150a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5227, 27, 49, 32, 51cnmpt22f 22282 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ (1 − 𝑡)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
5325, 27, 31, 25, 27, 31, 52cnmpt2res 22284 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((II ×t II) Cn 𝐽))
5424, 24cnmpt1st 22275 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑧) ∈ ((II ×t II) Cn II))
553cnfldtop 23391 . . . . . . . . . . . . . 14 𝐽 ∈ Top
56 cnrest2r 21894 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → (II Cn (𝐽t 𝑆)) ⊆ (II Cn 𝐽))
5755, 56ax-mp 5 . . . . . . . . . . . . 13 (II Cn (𝐽t 𝑆)) ⊆ (II Cn 𝐽)
584oveq2i 7166 . . . . . . . . . . . . . 14 (II Cn 𝐾) = (II Cn (𝐽t 𝑆))
596, 58eleqtrdi 2923 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝐽t 𝑆)))
6057, 59sseldi 3964 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽))
6124, 24, 54, 60cnmpt21f 22279 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓𝑧)) ∈ ((II ×t II) Cn 𝐽))
6224, 24, 53, 61, 45cnmpt22f 22282 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((1 − 𝑡) · (𝑓𝑧))) ∈ ((II ×t II) Cn 𝐽))
633addcn 23472 . . . . . . . . . . 11 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
6463a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
6524, 24, 46, 62, 64cnmpt22f 22282 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽))
6641adantr 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘0) ∈ 𝑆)
6715adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑓:(0[,]1)⟶ 𝐾)
68 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑧 ∈ (0[,]1))
6967, 68ffvelrnd 6851 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓𝑧) ∈ 𝐾)
7040adantr 483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑆 = 𝐾)
7169, 70eleqtrrd 2916 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓𝑧) ∈ 𝑆)
7223exp2 1350 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥𝑆 → (𝑦𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))))
7372imp42 429 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7473an32s 650 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (0[,]1)) ∧ (𝑥𝑆𝑦𝑆)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7574ralrimivva 3191 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
7675ad2ant2rl 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)
77 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓‘0) → (𝑡 · 𝑥) = (𝑡 · (𝑓‘0)))
7877oveq1d 7170 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓‘0) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)))
7978eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓‘0) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆))
80 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑓𝑧)))
8180oveq2d 7171 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑧) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))
8281eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑧) → (((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆))
8379, 82rspc2va 3633 . . . . . . . . . . . . . 14 ((((𝑓‘0) ∈ 𝑆 ∧ (𝑓𝑧) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
8466, 71, 76, 83syl21anc 835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
8584ralrimivva 3191 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆)
86 eqid 2821 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) = (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))
8786fmpo 7765 . . . . . . . . . . . 12 (∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) ∈ 𝑆 ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))):((0[,]1) × (0[,]1))⟶𝑆)
8885, 87sylib 220 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))):((0[,]1) × (0[,]1))⟶𝑆)
8988frnd 6520 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ⊆ 𝑆)
90 cnrest2 21893 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ⊆ 𝑆𝑆 ⊆ ℂ) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆))))
9127, 89, 34, 90syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆))))
9265, 91mpbid 234 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn (𝐽t 𝑆)))
934oveq2i 7166 . . . . . . . 8 ((II ×t II) Cn 𝐾) = ((II ×t II) Cn (𝐽t 𝑆))
9492, 93eleqtrrdi 2924 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ ((II ×t II) Cn 𝐾))
95 simpr 487 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
96 simpr 487 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → 𝑡 = 0)
9796oveq1d 7170 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 0) → (𝑡 · (𝑓‘0)) = (0 · (𝑓‘0)))
9896oveq2d 7171 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 0) → (1 − 𝑡) = (1 − 0))
99 1m0e1 11757 . . . . . . . . . . . . 13 (1 − 0) = 1
10098, 99syl6eq 2872 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → (1 − 𝑡) = 1)
101 simpl 485 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 0) → 𝑧 = 𝑠)
102101fveq2d 6673 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 0) → (𝑓𝑧) = (𝑓𝑠))
103100, 102oveq12d 7173 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 0) → ((1 − 𝑡) · (𝑓𝑧)) = (1 · (𝑓𝑠)))
10497, 103oveq12d 7173 . . . . . . . . . 10 ((𝑧 = 𝑠𝑡 = 0) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
105 ovex 7188 . . . . . . . . . 10 ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))) ∈ V
106104, 86, 105ovmpoa 7304 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
10795, 16, 106sylancl 588 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))))
10842adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) ∈ ℂ)
109108mul02d 10837 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘0)) = 0)
11026toponunii 21523 . . . . . . . . . . . . 13 ℂ = 𝐽
11113, 110cnf 21853 . . . . . . . . . . . 12 (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶ℂ)
11260, 111syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ℂ)
113112ffvelrnda 6850 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓𝑠) ∈ ℂ)
114113mulid2d 10658 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓𝑠)) = (𝑓𝑠))
115109, 114oveq12d 7173 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((0 · (𝑓‘0)) + (1 · (𝑓𝑠))) = (0 + (𝑓𝑠)))
116113addid2d 10840 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 + (𝑓𝑠)) = (𝑓𝑠))
117107, 115, 1163eqtrd 2860 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))0) = (𝑓𝑠))
118 1elunit 12855 . . . . . . . . 9 1 ∈ (0[,]1)
119 simpr 487 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → 𝑡 = 1)
120119oveq1d 7170 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 1) → (𝑡 · (𝑓‘0)) = (1 · (𝑓‘0)))
121119oveq2d 7171 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 1) → (1 − 𝑡) = (1 − 1))
122 1m1e0 11708 . . . . . . . . . . . . 13 (1 − 1) = 0
123121, 122syl6eq 2872 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → (1 − 𝑡) = 0)
124 simpl 485 . . . . . . . . . . . . 13 ((𝑧 = 𝑠𝑡 = 1) → 𝑧 = 𝑠)
125124fveq2d 6673 . . . . . . . . . . . 12 ((𝑧 = 𝑠𝑡 = 1) → (𝑓𝑧) = (𝑓𝑠))
126123, 125oveq12d 7173 . . . . . . . . . . 11 ((𝑧 = 𝑠𝑡 = 1) → ((1 − 𝑡) · (𝑓𝑧)) = (0 · (𝑓𝑠)))
127120, 126oveq12d 7173 . . . . . . . . . 10 ((𝑧 = 𝑠𝑡 = 1) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
128 ovex 7188 . . . . . . . . . 10 ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))) ∈ V
129127, 86, 128ovmpoa 7304 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
13095, 118, 129sylancl 588 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))))
131108mulid2d 10658 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘0)) = (𝑓‘0))
132113mul02d 10837 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓𝑠)) = 0)
133131, 132oveq12d 7173 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 · (𝑓‘0)) + (0 · (𝑓𝑠))) = ((𝑓‘0) + 0))
134108addid1d 10839 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (𝑓‘0))
135 fvex 6682 . . . . . . . . . . 11 (𝑓‘0) ∈ V
136135fvconst2 6965 . . . . . . . . . 10 (𝑠 ∈ (0[,]1) → (((0[,]1) × {(𝑓‘0)})‘𝑠) = (𝑓‘0))
137136adantl 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) × {(𝑓‘0)})‘𝑠) = (𝑓‘0))
138134, 137eqtr4d 2859 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (((0[,]1) × {(𝑓‘0)})‘𝑠))
139130, 133, 1383eqtrd 2860 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))1) = (((0[,]1) × {(𝑓‘0)})‘𝑠))
140 simpr 487 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠)
141140oveq1d 7170 . . . . . . . . . . 11 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0)))
142140oveq2d 7171 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠))
143 simpl 485 . . . . . . . . . . . . 13 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑧 = 0)
144143fveq2d 6673 . . . . . . . . . . . 12 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑓𝑧) = (𝑓‘0))
145142, 144oveq12d 7173 . . . . . . . . . . 11 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓𝑧)) = ((1 − 𝑠) · (𝑓‘0)))
146141, 145oveq12d 7173 . . . . . . . . . 10 ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
147 ovex 7188 . . . . . . . . . 10 ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) ∈ V
148146, 86, 147ovmpoa 7304 . . . . . . . . 9 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
14916, 95, 148sylancr 589 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
15030, 95sseldi 3964 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ)
151 pncan3 10893 . . . . . . . . . . 11 ((𝑠 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑠 + (1 − 𝑠)) = 1)
152150, 47, 151sylancl 588 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 + (1 − 𝑠)) = 1)
153152oveq1d 7170 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = (1 · (𝑓‘0)))
154 subcl 10884 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝑠 ∈ ℂ) → (1 − 𝑠) ∈ ℂ)
15547, 150, 154sylancr 589 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈ ℂ)
156150, 155, 108adddird 10665 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))))
157153, 156, 1313eqtr3d 2864 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = (𝑓‘0))
158149, 157eqtrd 2856 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = (𝑓‘0))
159 simpr 487 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠)
160159oveq1d 7170 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0)))
161159oveq2d 7171 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠))
162 simpl 485 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑧 = 1)
163162fveq2d 6673 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑓𝑧) = (𝑓‘1))
164161, 163oveq12d 7173 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓𝑧)) = ((1 − 𝑠) · (𝑓‘1)))
165160, 164oveq12d 7173 . . . . . . . . . 10 ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
166 ovex 7188 . . . . . . . . . 10 ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) ∈ V
167165, 86, 166ovmpoa 7304 . . . . . . . . 9 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
168118, 95, 167sylancr 589 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
169 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) = (𝑓‘1))
170169oveq2d 7171 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝑓‘0)) = ((1 − 𝑠) · (𝑓‘1)))
171170oveq2d 7171 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))))
172157, 171, 1693eqtr3d 2864 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) = (𝑓‘1))
173168, 172eqtrd 2856 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧))))𝑠) = (𝑓‘1))
1746, 22, 94, 117, 139, 158, 173isphtpy2d 23590 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓𝑧)))) ∈ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})))
175174ne0d 4300 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅)
176 isphtpc 23597 . . . . 5 (𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}) ↔ (𝑓 ∈ (II Cn 𝐾) ∧ ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅))
1776, 22, 175, 176syl3anbrc 1339 . . . 4 ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}))
178177expr 459 . . 3 ((𝜑𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)})))
179178ralrimiva 3182 . 2 (𝜑 → ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)})))
180 issconn 32473 . 2 (𝐾 ∈ SConn ↔ (𝐾 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐾)((0[,]1) × {(𝑓‘0)}))))
1815, 179, 180sylanbrc 585 1 (𝜑𝐾 ∈ SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wss 3935  c0 4290  {csn 4566   cuni 4837   class class class wbr 5065   × cxp 5552  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cmin 10869  [,]cicc 12740  t crest 16693  TopOpenctopn 16694  fldccnfld 20544  Topctop 21500  TopOnctopon 21517   Cn ccn 21831   ×t ctx 22167  IIcii 23482  PHtpycphtpy 23571  phcphtpc 23572  PConncpconn 32466  SConncsconn 32467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-ii 23484  df-htpy 23573  df-phtpy 23574  df-phtpc 23595  df-pconn 32468  df-sconn 32469
This theorem is referenced by:  blsconn  32491  resconn  32493
  Copyright terms: Public domain W3C validator