Step | Hyp | Ref
| Expression |
1 | | cvxpconn.1 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
2 | | cvxpconn.2 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
3 | | cvxpconn.3 |
. . 3
⊢ 𝐽 =
(TopOpen‘ℂfld) |
4 | | cvxpconn.4 |
. . 3
⊢ 𝐾 = (𝐽 ↾t 𝑆) |
5 | 1, 2, 3, 4 | cvxpconn 34846 |
. 2
⊢ (𝜑 → 𝐾 ∈ PConn) |
6 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐾)) |
7 | | pconntop 34829 |
. . . . . . . . . 10
⊢ (𝐾 ∈ PConn → 𝐾 ∈ Top) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ Top) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ Top) |
10 | | toptopon2 22813 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
11 | 9, 10 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
12 | | iiuni 24794 |
. . . . . . . . . 10
⊢ (0[,]1) =
∪ II |
13 | | eqid 2728 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
14 | 12, 13 | cnf 23143 |
. . . . . . . . 9
⊢ (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶∪
𝐾) |
15 | 6, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶∪
𝐾) |
16 | | 0elunit 13472 |
. . . . . . . 8
⊢ 0 ∈
(0[,]1) |
17 | | ffvelcdm 7085 |
. . . . . . . 8
⊢ ((𝑓:(0[,]1)⟶∪ 𝐾
∧ 0 ∈ (0[,]1)) → (𝑓‘0) ∈ ∪
𝐾) |
18 | 15, 16, 17 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ∪
𝐾) |
19 | | eqid 2728 |
. . . . . . . 8
⊢ ((0[,]1)
× {(𝑓‘0)}) =
((0[,]1) × {(𝑓‘0)}) |
20 | 19 | pcoptcl 24941 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾)
∧ (𝑓‘0) ∈
∪ 𝐾) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
21 | 11, 18, 20 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (((0[,]1) ×
{(𝑓‘0)})‘0) =
(𝑓‘0) ∧ (((0[,]1)
× {(𝑓‘0)})‘1) = (𝑓‘0))) |
22 | 21 | simp1d 1140 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾)) |
23 | | iitopon 24792 |
. . . . . . . . . . 11
⊢ II ∈
(TopOn‘(0[,]1)) |
24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → II ∈
(TopOn‘(0[,]1))) |
25 | 3 | dfii3 24796 |
. . . . . . . . . . . 12
⊢ II =
(𝐽 ↾t
(0[,]1)) |
26 | 3 | cnfldtopon 24692 |
. . . . . . . . . . . . 13
⊢ 𝐽 ∈
(TopOn‘ℂ) |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝐽 ∈
(TopOn‘ℂ)) |
28 | | unitsscn 13503 |
. . . . . . . . . . . . 13
⊢ (0[,]1)
⊆ ℂ |
29 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (0[,]1) ⊆
ℂ) |
30 | 27, 27 | cnmpt2nd 23566 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ ℂ, 𝑡 ∈ ℂ ↦ 𝑡) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
31 | 25, 27, 29, 25, 27, 29, 30 | cnmpt2res 23574 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((II ×t II) Cn
𝐽)) |
32 | 1 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 ⊆ ℂ) |
33 | | resttopon 23058 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
34 | 26, 1, 33 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
35 | 4, 34 | eqeltrid 2833 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑆)) |
36 | | toponuni 22809 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (TopOn‘𝑆) → 𝑆 = ∪ 𝐾) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 = ∪ 𝐾) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑆 = ∪ 𝐾) |
39 | 18, 38 | eleqtrrd 2832 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ 𝑆) |
40 | 32, 39 | sseldd 3979 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓‘0) ∈ ℂ) |
41 | 24, 24, 27, 40 | cnmpt2c 23567 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘0)) ∈ ((II ×t
II) Cn 𝐽)) |
42 | 3 | mpomulcn 24778 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
44 | | oveq12 7423 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑡 ∧ 𝑣 = (𝑓‘0)) → (𝑢 · 𝑣) = (𝑡 · (𝑓‘0))) |
45 | 24, 24, 31, 41, 27, 27, 43, 44 | cnmpt22 23571 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑡 · (𝑓‘0))) ∈ ((II ×t
II) Cn 𝐽)) |
46 | | ax-1cn 11190 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
47 | 46 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 1 ∈
ℂ) |
48 | 24, 24, 27, 47 | cnmpt2c 23567 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 1) ∈ ((II
×t II) Cn 𝐽)) |
49 | 3 | subcn 24775 |
. . . . . . . . . . . . 13
⊢ −
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
50 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
51 | 24, 24, 48, 31, 50 | cnmpt22f 23572 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((II
×t II) Cn 𝐽)) |
52 | 24, 24 | cnmpt1st 23565 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ 𝑧) ∈ ((II ×t II) Cn
II)) |
53 | 3 | cnfldtop 24693 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ Top |
54 | | cnrest2r 23184 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → (II Cn (𝐽 ↾t 𝑆)) ⊆ (II Cn 𝐽)) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (II Cn
(𝐽 ↾t
𝑆)) ⊆ (II Cn 𝐽) |
56 | 4 | oveq2i 7425 |
. . . . . . . . . . . . . 14
⊢ (II Cn
𝐾) = (II Cn (𝐽 ↾t 𝑆)) |
57 | 6, 56 | eleqtrdi 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn (𝐽 ↾t 𝑆))) |
58 | 55, 57 | sselid 3976 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓 ∈ (II Cn 𝐽)) |
59 | 24, 24, 52, 58 | cnmpt21f 23569 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝑓‘𝑧)) ∈ ((II ×t II) Cn
𝐽)) |
60 | | oveq12 7423 |
. . . . . . . . . . 11
⊢ ((𝑢 = (1 − 𝑡) ∧ 𝑣 = (𝑓‘𝑧)) → (𝑢 · 𝑣) = ((1 − 𝑡) · (𝑓‘𝑧))) |
61 | 24, 24, 51, 59, 27, 27, 43, 60 | cnmpt22 23571 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((1 − 𝑡) · (𝑓‘𝑧))) ∈ ((II ×t II) Cn
𝐽)) |
62 | 3 | addcn 24774 |
. . . . . . . . . . 11
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
63 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
64 | 24, 24, 45, 61, 63 | cnmpt22f 23572 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽)) |
65 | | oveq2 7422 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓‘0) → (𝑡 · 𝑥) = (𝑡 · (𝑓‘0))) |
66 | 65 | oveq1d 7429 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓‘0) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦))) |
67 | 66 | eleq1d 2814 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑓‘0) → (((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)) |
68 | | oveq2 7422 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑓‘𝑧) → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · (𝑓‘𝑧))) |
69 | 68 | oveq2d 7430 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑓‘𝑧) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) |
70 | 69 | eleq1d 2814 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑓‘𝑧) → (((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆 ↔ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆)) |
71 | 2 | 3exp2 1352 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → (𝑡 ∈ (0[,]1) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆)))) |
72 | 71 | imp42 426 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
73 | 72 | an32s 651 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (0[,]1)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
74 | 73 | ralrimivva 3196 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
75 | 74 | ad2ant2rl 748 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) |
76 | 39 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘0) ∈ 𝑆) |
77 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑓:(0[,]1)⟶∪
𝐾) |
78 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑧 ∈ (0[,]1)) |
79 | 77, 78 | ffvelcdmd 7089 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘𝑧) ∈ ∪ 𝐾) |
80 | 38 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → 𝑆 = ∪ 𝐾) |
81 | 79, 80 | eleqtrrd 2832 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → (𝑓‘𝑧) ∈ 𝑆) |
82 | 67, 70, 75, 76, 81 | rspc2dv 3623 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ (𝑧 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆) |
83 | 82 | ralrimivva 3196 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ∀𝑧 ∈ (0[,]1)∀𝑡 ∈ (0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆) |
84 | | eqid 2728 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) = (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) |
85 | 84 | fmpo 8066 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
(0[,]1)∀𝑡 ∈
(0[,]1)((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) ∈ 𝑆 ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))):((0[,]1) × (0[,]1))⟶𝑆) |
86 | 83, 85 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))):((0[,]1) × (0[,]1))⟶𝑆) |
87 | 86 | frnd 6724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ran (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ⊆ 𝑆) |
88 | | cnrest2 23183 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ ran (𝑧 ∈
(0[,]1), 𝑡 ∈ (0[,]1)
↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆)))) |
89 | 26, 87, 32, 88 | mp3an2i 1463 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → ((𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐽) ↔ (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆)))) |
90 | 64, 89 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
(𝐽 ↾t
𝑆))) |
91 | 4 | oveq2i 7425 |
. . . . . . . 8
⊢ ((II
×t II) Cn 𝐾) = ((II ×t II) Cn (𝐽 ↾t 𝑆)) |
92 | 90, 91 | eleqtrrdi 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ ((II ×t II) Cn
𝐾)) |
93 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
94 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → 𝑡 = 0) |
95 | 94 | oveq1d 7429 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (𝑡 · (𝑓‘0)) = (0 · (𝑓‘0))) |
96 | 94 | oveq2d 7430 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (1 − 𝑡) = (1 − 0)) |
97 | | 1m0e1 12357 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
98 | 96, 97 | eqtrdi 2784 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (1 − 𝑡) = 1) |
99 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → 𝑧 = 𝑠) |
100 | 99 | fveq2d 6895 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → (𝑓‘𝑧) = (𝑓‘𝑠)) |
101 | 98, 100 | oveq12d 7432 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → ((1 − 𝑡) · (𝑓‘𝑧)) = (1 · (𝑓‘𝑠))) |
102 | 95, 101 | oveq12d 7432 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 0) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
103 | | ovex 7447 |
. . . . . . . . . 10
⊢ ((0
· (𝑓‘0)) + (1
· (𝑓‘𝑠))) ∈ V |
104 | 102, 84, 103 | ovmpoa 7570 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
105 | 93, 16, 104 | sylancl 585 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠)))) |
106 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) ∈ ℂ) |
107 | 106 | mul02d 11436 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘0)) = 0) |
108 | 26 | toponunii 22811 |
. . . . . . . . . . . . 13
⊢ ℂ =
∪ 𝐽 |
109 | 12, 108 | cnf 23143 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (II Cn 𝐽) → 𝑓:(0[,]1)⟶ℂ) |
110 | 58, 109 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓:(0[,]1)⟶ℂ) |
111 | 110 | ffvelcdmda 7088 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘𝑠) ∈ ℂ) |
112 | 111 | mullidd 11256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘𝑠)) = (𝑓‘𝑠)) |
113 | 107, 112 | oveq12d 7432 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((0 · (𝑓‘0)) + (1 · (𝑓‘𝑠))) = (0 + (𝑓‘𝑠))) |
114 | 111 | addlidd 11439 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 + (𝑓‘𝑠)) = (𝑓‘𝑠)) |
115 | 105, 113,
114 | 3eqtrd 2772 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))0) = (𝑓‘𝑠)) |
116 | | 1elunit 13473 |
. . . . . . . . 9
⊢ 1 ∈
(0[,]1) |
117 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → 𝑡 = 1) |
118 | 117 | oveq1d 7429 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (𝑡 · (𝑓‘0)) = (1 · (𝑓‘0))) |
119 | 117 | oveq2d 7430 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (1 − 𝑡) = (1 − 1)) |
120 | | 1m1e0 12308 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
121 | 119, 120 | eqtrdi 2784 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (1 − 𝑡) = 0) |
122 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → 𝑧 = 𝑠) |
123 | 122 | fveq2d 6895 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → (𝑓‘𝑧) = (𝑓‘𝑠)) |
124 | 121, 123 | oveq12d 7432 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → ((1 − 𝑡) · (𝑓‘𝑧)) = (0 · (𝑓‘𝑠))) |
125 | 118, 124 | oveq12d 7432 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑠 ∧ 𝑡 = 1) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
126 | | ovex 7447 |
. . . . . . . . . 10
⊢ ((1
· (𝑓‘0)) + (0
· (𝑓‘𝑠))) ∈ V |
127 | 125, 84, 126 | ovmpoa 7570 |
. . . . . . . . 9
⊢ ((𝑠 ∈ (0[,]1) ∧ 1 ∈
(0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
128 | 93, 116, 127 | sylancl 585 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠)))) |
129 | 106 | mullidd 11256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 · (𝑓‘0)) = (𝑓‘0)) |
130 | 111 | mul02d 11436 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0 · (𝑓‘𝑠)) = 0) |
131 | 129, 130 | oveq12d 7432 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 · (𝑓‘0)) + (0 · (𝑓‘𝑠))) = ((𝑓‘0) + 0)) |
132 | 106 | addridd 11438 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (𝑓‘0)) |
133 | | fvex 6904 |
. . . . . . . . . . 11
⊢ (𝑓‘0) ∈
V |
134 | 133 | fvconst2 7210 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (0[,]1) → (((0[,]1)
× {(𝑓‘0)})‘𝑠) = (𝑓‘0)) |
135 | 134 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (((0[,]1) ×
{(𝑓‘0)})‘𝑠) = (𝑓‘0)) |
136 | 132, 135 | eqtr4d 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑓‘0) + 0) = (((0[,]1) × {(𝑓‘0)})‘𝑠)) |
137 | 128, 131,
136 | 3eqtrd 2772 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))1) = (((0[,]1) × {(𝑓‘0)})‘𝑠)) |
138 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠) |
139 | 138 | oveq1d 7429 |
. . . . . . . . . . 11
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0))) |
140 | 138 | oveq2d 7430 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠)) |
141 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → 𝑧 = 0) |
142 | 141 | fveq2d 6895 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → (𝑓‘𝑧) = (𝑓‘0)) |
143 | 140, 142 | oveq12d 7432 |
. . . . . . . . . . 11
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓‘𝑧)) = ((1 − 𝑠) · (𝑓‘0))) |
144 | 139, 143 | oveq12d 7432 |
. . . . . . . . . 10
⊢ ((𝑧 = 0 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
145 | | ovex 7447 |
. . . . . . . . . 10
⊢ ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) ∈ V |
146 | 144, 84, 145 | ovmpoa 7570 |
. . . . . . . . 9
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0(𝑧
∈ (0[,]1), 𝑡 ∈
(0[,]1) ↦ ((𝑡
· (𝑓‘0)) + ((1
− 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
147 | 16, 93, 146 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
148 | 28, 93 | sselid 3976 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ ℂ) |
149 | | pncan3 11492 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑠 + (1
− 𝑠)) =
1) |
150 | 148, 46, 149 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑠 + (1 − 𝑠)) = 1) |
151 | 150 | oveq1d 7429 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = (1 · (𝑓‘0))) |
152 | | subcl 11483 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ 𝑠
∈ ℂ) → (1 − 𝑠) ∈ ℂ) |
153 | 46, 148, 152 | sylancr 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1 − 𝑠) ∈
ℂ) |
154 | 148, 153,
106 | adddird 11263 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 + (1 − 𝑠)) · (𝑓‘0)) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0)))) |
155 | 151, 154,
129 | 3eqtr3d 2776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = (𝑓‘0)) |
156 | 147, 155 | eqtrd 2768 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (0(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = (𝑓‘0)) |
157 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑡 = 𝑠) |
158 | 157 | oveq1d 7429 |
. . . . . . . . . . 11
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑡 · (𝑓‘0)) = (𝑠 · (𝑓‘0))) |
159 | 157 | oveq2d 7430 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (1 − 𝑡) = (1 − 𝑠)) |
160 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → 𝑧 = 1) |
161 | 160 | fveq2d 6895 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → (𝑓‘𝑧) = (𝑓‘1)) |
162 | 159, 161 | oveq12d 7432 |
. . . . . . . . . . 11
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((1 − 𝑡) · (𝑓‘𝑧)) = ((1 − 𝑠) · (𝑓‘1))) |
163 | 158, 162 | oveq12d 7432 |
. . . . . . . . . 10
⊢ ((𝑧 = 1 ∧ 𝑡 = 𝑠) → ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
164 | | ovex 7447 |
. . . . . . . . . 10
⊢ ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) ∈ V |
165 | 163, 84, 164 | ovmpoa 7570 |
. . . . . . . . 9
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1(𝑧
∈ (0[,]1), 𝑡 ∈
(0[,]1) ↦ ((𝑡
· (𝑓‘0)) + ((1
− 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
166 | 116, 93, 165 | sylancr 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
167 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (𝑓‘0) = (𝑓‘1)) |
168 | 167 | oveq2d 7430 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((1 − 𝑠) · (𝑓‘0)) = ((1 − 𝑠) · (𝑓‘1))) |
169 | 168 | oveq2d 7430 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘0))) = ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1)))) |
170 | 155, 169,
167 | 3eqtr3d 2776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → ((𝑠 · (𝑓‘0)) + ((1 − 𝑠) · (𝑓‘1))) = (𝑓‘1)) |
171 | 166, 170 | eqtrd 2768 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) ∧ 𝑠 ∈ (0[,]1)) → (1(𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧))))𝑠) = (𝑓‘1)) |
172 | 6, 22, 92, 115, 137, 156, 171 | isphtpy2d 24906 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑧 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ ((𝑡 · (𝑓‘0)) + ((1 − 𝑡) · (𝑓‘𝑧)))) ∈ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
173 | 172 | ne0d 4331 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅) |
174 | | isphtpc 24913 |
. . . . 5
⊢ (𝑓(
≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}) ↔ (𝑓 ∈ (II Cn 𝐾) ∧ ((0[,]1) × {(𝑓‘0)}) ∈ (II Cn 𝐾) ∧ (𝑓(PHtpy‘𝐾)((0[,]1) × {(𝑓‘0)})) ≠ ∅)) |
175 | 6, 22, 173, 174 | syl3anbrc 1341 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (II Cn 𝐾) ∧ (𝑓‘0) = (𝑓‘1))) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)})) |
176 | 175 | expr 456 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (II Cn 𝐾)) → ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
177 | 176 | ralrimiva 3142 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)}))) |
178 | | issconn 34830 |
. 2
⊢ (𝐾 ∈ SConn ↔ (𝐾 ∈ PConn ∧
∀𝑓 ∈ (II Cn
𝐾)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐾)((0[,]1) × {(𝑓‘0)})))) |
179 | 5, 177, 178 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐾 ∈ SConn) |