MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem4 Structured version   Visualization version   GIF version

Theorem addsdilem4 28114
Description: Lemma for addsdi 28115. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.)
Hypotheses
Ref Expression
addsdilem4.1 (𝜑𝐴 No )
addsdilem4.2 (𝜑𝐵 No )
addsdilem4.3 (𝜑𝐶 No )
addsdilem4.4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
addsdilem4.5 (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)))
addsdilem4.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)))
addsdilem4.7 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
addsdilem4.8 (𝜓𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶)))
Assertion
Ref Expression
addsdilem4 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍))))
Distinct variable groups:   𝐴,𝑥𝑂,𝑧𝑂   𝐵,𝑥𝑂,𝑧𝑂   𝐶,𝑥𝑂,𝑧𝑂   𝑋,𝑥𝑂,𝑧𝑂   𝑍,𝑧𝑂
Allowed substitution hints:   𝜑(𝑥𝑂,𝑧𝑂)   𝜓(𝑥𝑂,𝑧𝑂)   𝑍(𝑥𝑂)

Proof of Theorem addsdilem4
StepHypRef Expression
1 oveq1 7417 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝐵 +s 𝐶)) = (𝑋 ·s (𝐵 +s 𝐶)))
2 oveq1 7417 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐵) = (𝑋 ·s 𝐵))
3 oveq1 7417 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐶) = (𝑋 ·s 𝐶))
42, 3oveq12d 7428 . . . . . 6 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
51, 4eqeq12d 2752 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) ↔ (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶))))
6 addsdilem4.4 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
76adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
8 addsdilem4.7 . . . . . 6 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
98adantl 481 . . . . 5 ((𝜑𝜓) → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
105, 7, 9rspcdva 3607 . . . 4 ((𝜑𝜓) → (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
11 oveq2 7418 . . . . . . 7 (𝑧𝑂 = 𝑍 → (𝐵 +s 𝑧𝑂) = (𝐵 +s 𝑍))
1211oveq2d 7426 . . . . . 6 (𝑧𝑂 = 𝑍 → (𝐴 ·s (𝐵 +s 𝑧𝑂)) = (𝐴 ·s (𝐵 +s 𝑍)))
13 oveq2 7418 . . . . . . 7 (𝑧𝑂 = 𝑍 → (𝐴 ·s 𝑧𝑂) = (𝐴 ·s 𝑍))
1413oveq2d 7426 . . . . . 6 (𝑧𝑂 = 𝑍 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍)))
1512, 14eqeq12d 2752 . . . . 5 (𝑧𝑂 = 𝑍 → ((𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)) ↔ (𝐴 ·s (𝐵 +s 𝑍)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))))
16 addsdilem4.5 . . . . . 6 (𝜑 → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)))
1716adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝐴 ·s (𝐵 +s 𝑧𝑂)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑧𝑂)))
18 addsdilem4.8 . . . . . 6 (𝜓𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶)))
1918adantl 481 . . . . 5 ((𝜑𝜓) → 𝑍 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶)))
2015, 17, 19rspcdva 3607 . . . 4 ((𝜑𝜓) → (𝐴 ·s (𝐵 +s 𝑍)) = ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍)))
2110, 20oveq12d 7428 . . 3 ((𝜑𝜓) → ((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) = (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))))
22 oveq1 7417 . . . . 5 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = (𝑋 ·s (𝐵 +s 𝑧𝑂)))
23 oveq1 7417 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝑧𝑂) = (𝑋 ·s 𝑧𝑂))
242, 23oveq12d 7428 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑧𝑂)))
2522, 24eqeq12d 2752 . . . 4 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)) ↔ (𝑋 ·s (𝐵 +s 𝑧𝑂)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑧𝑂))))
2611oveq2d 7426 . . . . 5 (𝑧𝑂 = 𝑍 → (𝑋 ·s (𝐵 +s 𝑧𝑂)) = (𝑋 ·s (𝐵 +s 𝑍)))
27 oveq2 7418 . . . . . 6 (𝑧𝑂 = 𝑍 → (𝑋 ·s 𝑧𝑂) = (𝑋 ·s 𝑍))
2827oveq2d 7426 . . . . 5 (𝑧𝑂 = 𝑍 → ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑧𝑂)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑍)))
2926, 28eqeq12d 2752 . . . 4 (𝑧𝑂 = 𝑍 → ((𝑋 ·s (𝐵 +s 𝑧𝑂)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑧𝑂)) ↔ (𝑋 ·s (𝐵 +s 𝑍)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑍))))
30 addsdilem4.6 . . . . 5 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)))
3130adantr 480 . . . 4 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑧𝑂 ∈ (( L ‘𝐶) ∪ ( R ‘𝐶))(𝑥𝑂 ·s (𝐵 +s 𝑧𝑂)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝑧𝑂)))
3225, 29, 31, 9, 19rspc2dv 3621 . . 3 ((𝜑𝜓) → (𝑋 ·s (𝐵 +s 𝑍)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑍)))
3321, 32oveq12d 7428 . 2 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑍))))
34 leftssno 27849 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
35 rightssno 27850 . . . . . . . . 9 ( R ‘𝐴) ⊆ No
3634, 35unssi 4171 . . . . . . . 8 (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No
3736, 8sselid 3961 . . . . . . 7 (𝜓𝑋 No )
3837adantl 481 . . . . . 6 ((𝜑𝜓) → 𝑋 No )
39 addsdilem4.2 . . . . . . 7 (𝜑𝐵 No )
4039adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐵 No )
4138, 40mulscld 28095 . . . . 5 ((𝜑𝜓) → (𝑋 ·s 𝐵) ∈ No )
42 addsdilem4.3 . . . . . . 7 (𝜑𝐶 No )
4342adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐶 No )
4438, 43mulscld 28095 . . . . 5 ((𝜑𝜓) → (𝑋 ·s 𝐶) ∈ No )
4541, 44addscld 27944 . . . 4 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) ∈ No )
46 addsdilem4.1 . . . . . . 7 (𝜑𝐴 No )
4746, 39mulscld 28095 . . . . . 6 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
4847adantr 480 . . . . 5 ((𝜑𝜓) → (𝐴 ·s 𝐵) ∈ No )
4946adantr 480 . . . . . 6 ((𝜑𝜓) → 𝐴 No )
50 leftssno 27849 . . . . . . . . 9 ( L ‘𝐶) ⊆ No
51 rightssno 27850 . . . . . . . . 9 ( R ‘𝐶) ⊆ No
5250, 51unssi 4171 . . . . . . . 8 (( L ‘𝐶) ∪ ( R ‘𝐶)) ⊆ No
5352, 18sselid 3961 . . . . . . 7 (𝜓𝑍 No )
5453adantl 481 . . . . . 6 ((𝜑𝜓) → 𝑍 No )
5549, 54mulscld 28095 . . . . 5 ((𝜑𝜓) → (𝐴 ·s 𝑍) ∈ No )
5648, 55addscld 27944 . . . 4 ((𝜑𝜓) → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍)) ∈ No )
5745, 56addscld 27944 . . 3 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) ∈ No )
5838, 54mulscld 28095 . . 3 ((𝜑𝜓) → (𝑋 ·s 𝑍) ∈ No )
5957, 41, 58subsubs4d 28055 . 2 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝑍)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝑍))))
6045, 56, 41addsubsd 28043 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝐵)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐵)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))))
6141, 44addscomd 27931 . . . . . . . 8 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) = ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝐵)))
6261oveq1d 7425 . . . . . . 7 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐵)) = (((𝑋 ·s 𝐶) +s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝐵)))
63 pncans 28033 . . . . . . . 8 (((𝑋 ·s 𝐶) ∈ No ∧ (𝑋 ·s 𝐵) ∈ No ) → (((𝑋 ·s 𝐶) +s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝐵)) = (𝑋 ·s 𝐶))
6444, 41, 63syl2anc 584 . . . . . . 7 ((𝜑𝜓) → (((𝑋 ·s 𝐶) +s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝐵)) = (𝑋 ·s 𝐶))
6562, 64eqtrd 2771 . . . . . 6 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐵)) = (𝑋 ·s 𝐶))
6665oveq1d 7425 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐵)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) = ((𝑋 ·s 𝐶) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))))
6744, 48, 55adds12d 27972 . . . . 5 ((𝜑𝜓) → ((𝑋 ·s 𝐶) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) = ((𝐴 ·s 𝐵) +s ((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍))))
6860, 66, 673eqtrd 2775 . . . 4 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝐵)) = ((𝐴 ·s 𝐵) +s ((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍))))
6968oveq1d 7425 . . 3 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝑍)) = (((𝐴 ·s 𝐵) +s ((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝑍)))
7044, 55addscld 27944 . . . 4 ((𝜑𝜓) → ((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) ∈ No )
7148, 70, 58addsubsassd 28042 . . 3 ((𝜑𝜓) → (((𝐴 ·s 𝐵) +s ((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝑍)) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍))))
7269, 71eqtrd 2771 . 2 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝑍))) -s (𝑋 ·s 𝐵)) -s (𝑋 ·s 𝑍)) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍))))
7333, 59, 723eqtr2d 2777 1 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝐵 +s 𝑍))) -s (𝑋 ·s (𝐵 +s 𝑍))) = ((𝐴 ·s 𝐵) +s (((𝑋 ·s 𝐶) +s (𝐴 ·s 𝑍)) -s (𝑋 ·s 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cun 3929  cfv 6536  (class class class)co 7410   No csur 27608   L cleft 27810   R cright 27811   +s cadds 27923   -s csubs 27983   ·s cmuls 28066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067
This theorem is referenced by:  addsdi  28115
  Copyright terms: Public domain W3C validator