MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem3 Structured version   Visualization version   GIF version

Theorem addsdilem3 28079
Description: Lemma for addsdi 28081. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.)
Hypotheses
Ref Expression
addsdilem3.1 (𝜑𝐴 No )
addsdilem3.2 (𝜑𝐵 No )
addsdilem3.3 (𝜑𝐶 No )
addsdilem3.4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
addsdilem3.5 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
addsdilem3.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
addsdilem3.7 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
addsdilem3.8 (𝜓𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
Assertion
Ref Expression
addsdilem3 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
Distinct variable groups:   𝐴,𝑥𝑂,𝑦𝑂   𝐵,𝑥𝑂,𝑦𝑂   𝐶,𝑥𝑂,𝑦𝑂   𝑋,𝑥𝑂,𝑦𝑂   𝑌,𝑦𝑂
Allowed substitution hints:   𝜑(𝑥𝑂,𝑦𝑂)   𝜓(𝑥𝑂,𝑦𝑂)   𝑌(𝑥𝑂)

Proof of Theorem addsdilem3
StepHypRef Expression
1 oveq1 7360 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝐵 +s 𝐶)) = (𝑋 ·s (𝐵 +s 𝐶)))
2 oveq1 7360 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐵) = (𝑋 ·s 𝐵))
3 oveq1 7360 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐶) = (𝑋 ·s 𝐶))
42, 3oveq12d 7371 . . . . . 6 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
51, 4eqeq12d 2745 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) ↔ (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶))))
6 addsdilem3.4 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
76adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
8 addsdilem3.7 . . . . . 6 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
98adantl 481 . . . . 5 ((𝜑𝜓) → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
105, 7, 9rspcdva 3580 . . . 4 ((𝜑𝜓) → (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
11 oveq1 7360 . . . . . . 7 (𝑦𝑂 = 𝑌 → (𝑦𝑂 +s 𝐶) = (𝑌 +s 𝐶))
1211oveq2d 7369 . . . . . 6 (𝑦𝑂 = 𝑌 → (𝐴 ·s (𝑦𝑂 +s 𝐶)) = (𝐴 ·s (𝑌 +s 𝐶)))
13 oveq2 7361 . . . . . . 7 (𝑦𝑂 = 𝑌 → (𝐴 ·s 𝑦𝑂) = (𝐴 ·s 𝑌))
1413oveq1d 7368 . . . . . 6 (𝑦𝑂 = 𝑌 → ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)))
1512, 14eqeq12d 2745 . . . . 5 (𝑦𝑂 = 𝑌 → ((𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)) ↔ (𝐴 ·s (𝑌 +s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
16 addsdilem3.5 . . . . . 6 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
1716adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
18 addsdilem3.8 . . . . . 6 (𝜓𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
1918adantl 481 . . . . 5 ((𝜑𝜓) → 𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
2015, 17, 19rspcdva 3580 . . . 4 ((𝜑𝜓) → (𝐴 ·s (𝑌 +s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)))
2110, 20oveq12d 7371 . . 3 ((𝜑𝜓) → ((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) = (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
22 oveq1 7360 . . . . 5 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = (𝑋 ·s (𝑦𝑂 +s 𝐶)))
23 oveq1 7360 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝑦𝑂) = (𝑋 ·s 𝑦𝑂))
2423, 3oveq12d 7371 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)))
2522, 24eqeq12d 2745 . . . 4 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)) ↔ (𝑋 ·s (𝑦𝑂 +s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶))))
2611oveq2d 7369 . . . . 5 (𝑦𝑂 = 𝑌 → (𝑋 ·s (𝑦𝑂 +s 𝐶)) = (𝑋 ·s (𝑌 +s 𝐶)))
27 oveq2 7361 . . . . . 6 (𝑦𝑂 = 𝑌 → (𝑋 ·s 𝑦𝑂) = (𝑋 ·s 𝑌))
2827oveq1d 7368 . . . . 5 (𝑦𝑂 = 𝑌 → ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
2926, 28eqeq12d 2745 . . . 4 (𝑦𝑂 = 𝑌 → ((𝑋 ·s (𝑦𝑂 +s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)) ↔ (𝑋 ·s (𝑌 +s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
30 addsdilem3.6 . . . . 5 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
3130adantr 480 . . . 4 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
3225, 29, 31, 9, 19rspc2dv 3594 . . 3 ((𝜑𝜓) → (𝑋 ·s (𝑌 +s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
3321, 32oveq12d 7371 . 2 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
34 leftssno 27813 . . . . . . . . . . 11 ( L ‘𝐴) ⊆ No
35 rightssno 27814 . . . . . . . . . . 11 ( R ‘𝐴) ⊆ No
3634, 35unssi 4144 . . . . . . . . . 10 (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No
3736, 8sselid 3935 . . . . . . . . 9 (𝜓𝑋 No )
3837adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑋 No )
39 addsdilem3.2 . . . . . . . . 9 (𝜑𝐵 No )
4039adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐵 No )
4138, 40mulscld 28061 . . . . . . 7 ((𝜑𝜓) → (𝑋 ·s 𝐵) ∈ No )
42 addsdilem3.3 . . . . . . . . 9 (𝜑𝐶 No )
4342adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐶 No )
4438, 43mulscld 28061 . . . . . . 7 ((𝜑𝜓) → (𝑋 ·s 𝐶) ∈ No )
45 pncans 27999 . . . . . . 7 (((𝑋 ·s 𝐵) ∈ No ∧ (𝑋 ·s 𝐶) ∈ No ) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) = (𝑋 ·s 𝐵))
4641, 44, 45syl2anc 584 . . . . . 6 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) = (𝑋 ·s 𝐵))
4746oveq1d 7368 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) = ((𝑋 ·s 𝐵) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
4841, 44addscld 27910 . . . . . 6 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) ∈ No )
49 addsdilem3.1 . . . . . . . . 9 (𝜑𝐴 No )
5049adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐴 No )
51 leftssno 27813 . . . . . . . . . . 11 ( L ‘𝐵) ⊆ No
52 rightssno 27814 . . . . . . . . . . 11 ( R ‘𝐵) ⊆ No
5351, 52unssi 4144 . . . . . . . . . 10 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
5453, 18sselid 3935 . . . . . . . . 9 (𝜓𝑌 No )
5554adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑌 No )
5650, 55mulscld 28061 . . . . . . 7 ((𝜑𝜓) → (𝐴 ·s 𝑌) ∈ No )
5749, 42mulscld 28061 . . . . . . . 8 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
5857adantr 480 . . . . . . 7 ((𝜑𝜓) → (𝐴 ·s 𝐶) ∈ No )
5956, 58addscld 27910 . . . . . 6 ((𝜑𝜓) → ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)) ∈ No )
6048, 59, 44addsubsd 28009 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
6141, 56, 58addsassd 27936 . . . . 5 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) = ((𝑋 ·s 𝐵) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
6247, 60, 613eqtr4d 2774 . . . 4 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) = (((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
6362oveq1d 7368 . . 3 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) -s (𝑋 ·s 𝑌)))
6448, 59addscld 27910 . . . . 5 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) ∈ No )
6537, 54mulscld 28061 . . . . . 6 (𝜓 → (𝑋 ·s 𝑌) ∈ No )
6665adantl 481 . . . . 5 ((𝜑𝜓) → (𝑋 ·s 𝑌) ∈ No )
6764, 44, 66subsubs4d 28021 . . . 4 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌))))
6844, 66addscomd 27897 . . . . 5 ((𝜑𝜓) → ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
6968oveq2d 7369 . . . 4 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌))) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
7067, 69eqtrd 2764 . . 3 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
7141, 56addscld 27910 . . . 4 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) ∈ No )
7271, 58, 66addsubsd 28009 . . 3 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
7363, 70, 723eqtr3d 2772 . 2 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
7433, 73eqtrd 2764 1 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3903  cfv 6486  (class class class)co 7353   No csur 27567   L cleft 27773   R cright 27774   +s cadds 27889   -s csubs 27949   ·s cmuls 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033
This theorem is referenced by:  addsdi  28081
  Copyright terms: Public domain W3C validator