MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem3 Structured version   Visualization version   GIF version

Theorem addsdilem3 28197
Description: Lemma for addsdi 28199. Show one of the equalities involved in the final expression. (Contributed by Scott Fenton, 9-Mar-2025.)
Hypotheses
Ref Expression
addsdilem3.1 (𝜑𝐴 No )
addsdilem3.2 (𝜑𝐵 No )
addsdilem3.3 (𝜑𝐶 No )
addsdilem3.4 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
addsdilem3.5 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
addsdilem3.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
addsdilem3.7 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
addsdilem3.8 (𝜓𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
Assertion
Ref Expression
addsdilem3 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
Distinct variable groups:   𝐴,𝑥𝑂,𝑦𝑂   𝐵,𝑥𝑂,𝑦𝑂   𝐶,𝑥𝑂,𝑦𝑂   𝑋,𝑥𝑂,𝑦𝑂   𝑌,𝑦𝑂
Allowed substitution hints:   𝜑(𝑥𝑂,𝑦𝑂)   𝜓(𝑥𝑂,𝑦𝑂)   𝑌(𝑥𝑂)

Proof of Theorem addsdilem3
StepHypRef Expression
1 oveq1 7455 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝐵 +s 𝐶)) = (𝑋 ·s (𝐵 +s 𝐶)))
2 oveq1 7455 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐵) = (𝑋 ·s 𝐵))
3 oveq1 7455 . . . . . . 7 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝐶) = (𝑋 ·s 𝐶))
42, 3oveq12d 7466 . . . . . 6 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
51, 4eqeq12d 2756 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)) ↔ (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶))))
6 addsdilem3.4 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
76adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))(𝑥𝑂 ·s (𝐵 +s 𝐶)) = ((𝑥𝑂 ·s 𝐵) +s (𝑥𝑂 ·s 𝐶)))
8 addsdilem3.7 . . . . . 6 (𝜓𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
98adantl 481 . . . . 5 ((𝜑𝜓) → 𝑋 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
105, 7, 9rspcdva 3636 . . . 4 ((𝜑𝜓) → (𝑋 ·s (𝐵 +s 𝐶)) = ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)))
11 oveq1 7455 . . . . . . 7 (𝑦𝑂 = 𝑌 → (𝑦𝑂 +s 𝐶) = (𝑌 +s 𝐶))
1211oveq2d 7464 . . . . . 6 (𝑦𝑂 = 𝑌 → (𝐴 ·s (𝑦𝑂 +s 𝐶)) = (𝐴 ·s (𝑌 +s 𝐶)))
13 oveq2 7456 . . . . . . 7 (𝑦𝑂 = 𝑌 → (𝐴 ·s 𝑦𝑂) = (𝐴 ·s 𝑌))
1413oveq1d 7463 . . . . . 6 (𝑦𝑂 = 𝑌 → ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)))
1512, 14eqeq12d 2756 . . . . 5 (𝑦𝑂 = 𝑌 → ((𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)) ↔ (𝐴 ·s (𝑌 +s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
16 addsdilem3.5 . . . . . 6 (𝜑 → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
1716adantr 480 . . . . 5 ((𝜑𝜓) → ∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝐴 ·s (𝑦𝑂 +s 𝐶)) = ((𝐴 ·s 𝑦𝑂) +s (𝐴 ·s 𝐶)))
18 addsdilem3.8 . . . . . 6 (𝜓𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
1918adantl 481 . . . . 5 ((𝜑𝜓) → 𝑌 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵)))
2015, 17, 19rspcdva 3636 . . . 4 ((𝜑𝜓) → (𝐴 ·s (𝑌 +s 𝐶)) = ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)))
2110, 20oveq12d 7466 . . 3 ((𝜑𝜓) → ((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) = (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
22 oveq1 7455 . . . . 5 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = (𝑋 ·s (𝑦𝑂 +s 𝐶)))
23 oveq1 7455 . . . . . 6 (𝑥𝑂 = 𝑋 → (𝑥𝑂 ·s 𝑦𝑂) = (𝑋 ·s 𝑦𝑂))
2423, 3oveq12d 7466 . . . . 5 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)))
2522, 24eqeq12d 2756 . . . 4 (𝑥𝑂 = 𝑋 → ((𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)) ↔ (𝑋 ·s (𝑦𝑂 +s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶))))
2611oveq2d 7464 . . . . 5 (𝑦𝑂 = 𝑌 → (𝑋 ·s (𝑦𝑂 +s 𝐶)) = (𝑋 ·s (𝑌 +s 𝐶)))
27 oveq2 7456 . . . . . 6 (𝑦𝑂 = 𝑌 → (𝑋 ·s 𝑦𝑂) = (𝑋 ·s 𝑌))
2827oveq1d 7463 . . . . 5 (𝑦𝑂 = 𝑌 → ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
2926, 28eqeq12d 2756 . . . 4 (𝑦𝑂 = 𝑌 → ((𝑋 ·s (𝑦𝑂 +s 𝐶)) = ((𝑋 ·s 𝑦𝑂) +s (𝑋 ·s 𝐶)) ↔ (𝑋 ·s (𝑌 +s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
30 addsdilem3.6 . . . . 5 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
3130adantr 480 . . . 4 ((𝜑𝜓) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))∀𝑦𝑂 ∈ (( L ‘𝐵) ∪ ( R ‘𝐵))(𝑥𝑂 ·s (𝑦𝑂 +s 𝐶)) = ((𝑥𝑂 ·s 𝑦𝑂) +s (𝑥𝑂 ·s 𝐶)))
3225, 29, 31, 9, 19rspc2dv 3650 . . 3 ((𝜑𝜓) → (𝑋 ·s (𝑌 +s 𝐶)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
3321, 32oveq12d 7466 . 2 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
34 leftssno 27937 . . . . . . . . . . 11 ( L ‘𝐴) ⊆ No
35 rightssno 27938 . . . . . . . . . . 11 ( R ‘𝐴) ⊆ No
3634, 35unssi 4214 . . . . . . . . . 10 (( L ‘𝐴) ∪ ( R ‘𝐴)) ⊆ No
3736, 8sselid 4006 . . . . . . . . 9 (𝜓𝑋 No )
3837adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑋 No )
39 addsdilem3.2 . . . . . . . . 9 (𝜑𝐵 No )
4039adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐵 No )
4138, 40mulscld 28179 . . . . . . 7 ((𝜑𝜓) → (𝑋 ·s 𝐵) ∈ No )
42 addsdilem3.3 . . . . . . . . 9 (𝜑𝐶 No )
4342adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐶 No )
4438, 43mulscld 28179 . . . . . . 7 ((𝜑𝜓) → (𝑋 ·s 𝐶) ∈ No )
45 pncans 28120 . . . . . . 7 (((𝑋 ·s 𝐵) ∈ No ∧ (𝑋 ·s 𝐶) ∈ No ) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) = (𝑋 ·s 𝐵))
4641, 44, 45syl2anc 583 . . . . . 6 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) = (𝑋 ·s 𝐵))
4746oveq1d 7463 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) = ((𝑋 ·s 𝐵) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
4841, 44addscld 28031 . . . . . 6 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) ∈ No )
49 addsdilem3.1 . . . . . . . . 9 (𝜑𝐴 No )
5049adantr 480 . . . . . . . 8 ((𝜑𝜓) → 𝐴 No )
51 leftssno 27937 . . . . . . . . . . 11 ( L ‘𝐵) ⊆ No
52 rightssno 27938 . . . . . . . . . . 11 ( R ‘𝐵) ⊆ No
5351, 52unssi 4214 . . . . . . . . . 10 (( L ‘𝐵) ∪ ( R ‘𝐵)) ⊆ No
5453, 18sselid 4006 . . . . . . . . 9 (𝜓𝑌 No )
5554adantl 481 . . . . . . . 8 ((𝜑𝜓) → 𝑌 No )
5650, 55mulscld 28179 . . . . . . 7 ((𝜑𝜓) → (𝐴 ·s 𝑌) ∈ No )
5749, 42mulscld 28179 . . . . . . . 8 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
5857adantr 480 . . . . . . 7 ((𝜑𝜓) → (𝐴 ·s 𝐶) ∈ No )
5956, 58addscld 28031 . . . . . 6 ((𝜑𝜓) → ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶)) ∈ No )
6048, 59, 44addsubsd 28130 . . . . 5 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
6141, 56, 58addsassd 28057 . . . . 5 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) = ((𝑋 ·s 𝐵) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))))
6247, 60, 613eqtr4d 2790 . . . 4 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) = (((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
6362oveq1d 7463 . . 3 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) -s (𝑋 ·s 𝑌)))
6448, 59addscld 28031 . . . . 5 ((𝜑𝜓) → (((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) ∈ No )
6537, 54mulscld 28179 . . . . . 6 (𝜓 → (𝑋 ·s 𝑌) ∈ No )
6665adantl 481 . . . . 5 ((𝜑𝜓) → (𝑋 ·s 𝑌) ∈ No )
6764, 44, 66subsubs4d 28142 . . . 4 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌))))
6844, 66addscomd 28018 . . . . 5 ((𝜑𝜓) → ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌)) = ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶)))
6968oveq2d 7464 . . . 4 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝐶) +s (𝑋 ·s 𝑌))) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
7067, 69eqtrd 2780 . . 3 ((𝜑𝜓) → (((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s (𝑋 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))))
7141, 56addscld 28031 . . . 4 ((𝜑𝜓) → ((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) ∈ No )
7271, 58, 66addsubsd 28130 . . 3 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) +s (𝐴 ·s 𝐶)) -s (𝑋 ·s 𝑌)) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
7363, 70, 723eqtr3d 2788 . 2 ((𝜑𝜓) → ((((𝑋 ·s 𝐵) +s (𝑋 ·s 𝐶)) +s ((𝐴 ·s 𝑌) +s (𝐴 ·s 𝐶))) -s ((𝑋 ·s 𝑌) +s (𝑋 ·s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
7433, 73eqtrd 2780 1 ((𝜑𝜓) → (((𝑋 ·s (𝐵 +s 𝐶)) +s (𝐴 ·s (𝑌 +s 𝐶))) -s (𝑋 ·s (𝑌 +s 𝐶))) = ((((𝑋 ·s 𝐵) +s (𝐴 ·s 𝑌)) -s (𝑋 ·s 𝑌)) +s (𝐴 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cun 3974  cfv 6573  (class class class)co 7448   No csur 27702   L cleft 27902   R cright 27903   +s cadds 28010   -s csubs 28070   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  addsdi  28199
  Copyright terms: Public domain W3C validator