![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcedeq1vd | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3586 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspcedeq1vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedeqvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
3 | 2 | eqeq1d 2739 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐷 = 𝐷)) |
4 | eqidd 2738 | . 2 ⊢ (𝜑 → 𝐷 = 𝐷) | |
5 | 1, 3, 4 | rspcedvd 3586 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 |
This theorem is referenced by: mod2eq1n2dvds 16236 fincygsubgodexd 19899 fsuppcurry1 31684 fsuppcurry2 31685 |
Copyright terms: Public domain | W3C validator |