MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedeq1vd Structured version   Visualization version   GIF version

Theorem rspcedeq1vd 3558
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3555 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1 (𝜑𝐴𝐵)
rspcedeqvd.2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
rspcedeq1vd (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐷
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspcedeq1vd
StepHypRef Expression
1 rspcedeqvd.1 . 2 (𝜑𝐴𝐵)
2 rspcedeqvd.2 . . 3 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
32eqeq1d 2740 . 2 ((𝜑𝑥 = 𝐴) → (𝐶 = 𝐷𝐷 = 𝐷))
4 eqidd 2739 . 2 (𝜑𝐷 = 𝐷)
51, 3, 4rspcedvd 3555 1 (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069
This theorem is referenced by:  mod2eq1n2dvds  15984  fincygsubgodexd  19631  fsuppcurry1  30962  fsuppcurry2  30963
  Copyright terms: Public domain W3C validator