Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcedeq1vd | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3555 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspcedeq1vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedeqvd.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
3 | 2 | eqeq1d 2740 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐷 = 𝐷)) |
4 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐷 = 𝐷) | |
5 | 1, 3, 4 | rspcedvd 3555 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: mod2eq1n2dvds 15984 fincygsubgodexd 19631 fsuppcurry1 30962 fsuppcurry2 30963 |
Copyright terms: Public domain | W3C validator |