Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry1 Structured version   Visualization version   GIF version

Theorem fsuppcurry1 31105
Description: Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry1.g 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
fsuppcurry1.z (𝜑𝑍𝑈)
fsuppcurry1.a (𝜑𝐴𝑉)
fsuppcurry1.b (𝜑𝐵𝑊)
fsuppcurry1.f (𝜑𝐹 Fn (𝐴 × 𝐵))
fsuppcurry1.c (𝜑𝐶𝐴)
fsuppcurry1.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppcurry1 (𝜑𝐺 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑈(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppcurry1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry1.g . . . 4 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
2 oveq2 7315 . . . . 5 (𝑥 = 𝑦 → (𝐶𝐹𝑥) = (𝐶𝐹𝑦))
32cbvmptv 5194 . . . 4 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
41, 3eqtri 2764 . . 3 𝐺 = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
5 fsuppcurry1.b . . . 4 (𝜑𝐵𝑊)
65mptexd 7132 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝐶𝐹𝑦)) ∈ V)
74, 6eqeltrid 2841 . 2 (𝜑𝐺 ∈ V)
81funmpt2 6502 . . 3 Fun 𝐺
98a1i 11 . 2 (𝜑 → Fun 𝐺)
10 fsuppcurry1.z . 2 (𝜑𝑍𝑈)
11 fo2nd 7884 . . . . 5 2nd :V–onto→V
12 fofun 6719 . . . . 5 (2nd :V–onto→V → Fun 2nd )
1311, 12ax-mp 5 . . . 4 Fun 2nd
14 funres 6505 . . . 4 (Fun 2nd → Fun (2nd ↾ (V × V)))
1513, 14mp1i 13 . . 3 (𝜑 → Fun (2nd ↾ (V × V)))
16 fsuppcurry1.1 . . . 4 (𝜑𝐹 finSupp 𝑍)
1716fsuppimpd 9179 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 imafi 8996 . . 3 ((Fun (2nd ↾ (V × V)) ∧ (𝐹 supp 𝑍) ∈ Fin) → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
1915, 17, 18syl2anc 585 . 2 (𝜑 → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
20 ovexd 7342 . . . 4 ((𝜑𝑦𝐵) → (𝐶𝐹𝑦) ∈ V)
2120, 4fmptd 7020 . . 3 (𝜑𝐺:𝐵⟶V)
22 eldif 3902 . . . 4 (𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
23 fsuppcurry1.c . . . . . . . . . . . 12 (𝜑𝐶𝐴)
2423ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝐶𝐴)
25 simplr 767 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦𝐵)
2624, 25opelxpd 5638 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
27 df-ov 7310 . . . . . . . . . . 11 (𝐶𝐹𝑦) = (𝐹‘⟨𝐶, 𝑦⟩)
28 ovexd 7342 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ∈ V)
291, 2, 25, 28fvmptd3 6930 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = (𝐶𝐹𝑦))
30 simpr 486 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ¬ (𝐺𝑦) = 𝑍)
3130neqned 2948 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) ≠ 𝑍)
3229, 31eqnetrrd 3010 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ≠ 𝑍)
3327, 32eqnetrrid 3017 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)
34 fsuppcurry1.f . . . . . . . . . . . 12 (𝜑𝐹 Fn (𝐴 × 𝐵))
35 fsuppcurry1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
3635, 5xpexd 7633 . . . . . . . . . . . 12 (𝜑 → (𝐴 × 𝐵) ∈ V)
37 elsuppfn 8018 . . . . . . . . . . . 12 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝑍𝑈) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3834, 36, 10, 37syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3938ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
4026, 33, 39mpbir2and 711 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍))
41 simpr 486 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑧 = ⟨𝐶, 𝑦⟩)
4241fveq2d 6808 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩))
43 xpss 5616 . . . . . . . . . . . 12 (𝐴 × 𝐵) ⊆ (V × V)
4426adantr 482 . . . . . . . . . . . 12 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
4543, 44sselid 3924 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (V × V))
4645fvresd 6824 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩) = (2nd ‘⟨𝐶, 𝑦⟩))
4724adantr 482 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝐶𝐴)
4825adantr 482 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑦𝐵)
49 op2ndg 7876 . . . . . . . . . . 11 ((𝐶𝐴𝑦𝐵) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5047, 48, 49syl2anc 585 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5142, 46, 503eqtrd 2780 . . . . . . . . 9 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = 𝑦)
5240, 51rspcedeq1vd 3571 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦)
53 fofn 6720 . . . . . . . . . . . . 13 (2nd :V–onto→V → 2nd Fn V)
54 fnresin 31006 . . . . . . . . . . . . 13 (2nd Fn V → (2nd ↾ (V × V)) Fn (V ∩ (V × V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (2nd ↾ (V × V)) Fn (V ∩ (V × V))
56 ssv 3950 . . . . . . . . . . . . . 14 (V × V) ⊆ V
57 sseqin2 4155 . . . . . . . . . . . . . 14 ((V × V) ⊆ V ↔ (V ∩ (V × V)) = (V × V))
5856, 57mpbi 229 . . . . . . . . . . . . 13 (V ∩ (V × V)) = (V × V)
5958fneq2i 6562 . . . . . . . . . . . 12 ((2nd ↾ (V × V)) Fn (V ∩ (V × V)) ↔ (2nd ↾ (V × V)) Fn (V × V))
6055, 59mpbi 229 . . . . . . . . . . 11 (2nd ↾ (V × V)) Fn (V × V)
6160a1i 11 . . . . . . . . . 10 (𝜑 → (2nd ↾ (V × V)) Fn (V × V))
62 suppssdm 8024 . . . . . . . . . . . 12 (𝐹 supp 𝑍) ⊆ dom 𝐹
6334fndmd 6569 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (𝐴 × 𝐵))
6462, 63sseqtrid 3978 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐴 × 𝐵))
6564, 43sstrdi 3938 . . . . . . . . . 10 (𝜑 → (𝐹 supp 𝑍) ⊆ (V × V))
6661, 65fvelimabd 6874 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6766ad2antrr 724 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6852, 67mpbird 257 . . . . . . 7 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
6968ex 414 . . . . . 6 ((𝜑𝑦𝐵) → (¬ (𝐺𝑦) = 𝑍𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
7069con1d 145 . . . . 5 ((𝜑𝑦𝐵) → (¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) → (𝐺𝑦) = 𝑍))
7170impr 456 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7222, 71sylan2b 595 . . 3 ((𝜑𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7321, 72suppss 8041 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
74 suppssfifsupp 9187 . 2 (((𝐺 ∈ V ∧ Fun 𝐺𝑍𝑈) ∧ (((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → 𝐺 finSupp 𝑍)
757, 9, 10, 19, 73, 74syl32anc 1378 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wne 2941  wrex 3071  Vcvv 3437  cdif 3889  cin 3891  wss 3892  cop 4571   class class class wbr 5081  cmpt 5164   × cxp 5598  dom cdm 5600  cres 5602  cima 5603  Fun wfun 6452   Fn wfn 6453  ontowfo 6456  cfv 6458  (class class class)co 7307  2nd c2nd 7862   supp csupp 8008  Fincfn 8764   finSupp cfsupp 9172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-supp 8009  df-1o 8328  df-en 8765  df-fin 8768  df-fsupp 9173
This theorem is referenced by:  fedgmullem2  31756
  Copyright terms: Public domain W3C validator