Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry1 Structured version   Visualization version   GIF version

Theorem fsuppcurry1 31988
Description: Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry1.g šŗ = (š‘„ āˆˆ šµ ā†¦ (š¶š¹š‘„))
fsuppcurry1.z (šœ‘ ā†’ š‘ āˆˆ š‘ˆ)
fsuppcurry1.a (šœ‘ ā†’ š“ āˆˆ š‘‰)
fsuppcurry1.b (šœ‘ ā†’ šµ āˆˆ š‘Š)
fsuppcurry1.f (šœ‘ ā†’ š¹ Fn (š“ Ɨ šµ))
fsuppcurry1.c (šœ‘ ā†’ š¶ āˆˆ š“)
fsuppcurry1.1 (šœ‘ ā†’ š¹ finSupp š‘)
Assertion
Ref Expression
fsuppcurry1 (šœ‘ ā†’ šŗ finSupp š‘)
Distinct variable groups:   š‘„,šµ   š‘„,š¶   š‘„,š¹
Allowed substitution hints:   šœ‘(š‘„)   š“(š‘„)   š‘ˆ(š‘„)   šŗ(š‘„)   š‘‰(š‘„)   š‘Š(š‘„)   š‘(š‘„)

Proof of Theorem fsuppcurry1
Dummy variables š‘¦ š‘§ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry1.g . . . 4 šŗ = (š‘„ āˆˆ šµ ā†¦ (š¶š¹š‘„))
2 oveq2 7419 . . . . 5 (š‘„ = š‘¦ ā†’ (š¶š¹š‘„) = (š¶š¹š‘¦))
32cbvmptv 5261 . . . 4 (š‘„ āˆˆ šµ ā†¦ (š¶š¹š‘„)) = (š‘¦ āˆˆ šµ ā†¦ (š¶š¹š‘¦))
41, 3eqtri 2760 . . 3 šŗ = (š‘¦ āˆˆ šµ ā†¦ (š¶š¹š‘¦))
5 fsuppcurry1.b . . . 4 (šœ‘ ā†’ šµ āˆˆ š‘Š)
65mptexd 7228 . . 3 (šœ‘ ā†’ (š‘¦ āˆˆ šµ ā†¦ (š¶š¹š‘¦)) āˆˆ V)
74, 6eqeltrid 2837 . 2 (šœ‘ ā†’ šŗ āˆˆ V)
81funmpt2 6587 . . 3 Fun šŗ
98a1i 11 . 2 (šœ‘ ā†’ Fun šŗ)
10 fsuppcurry1.z . 2 (šœ‘ ā†’ š‘ āˆˆ š‘ˆ)
11 fo2nd 7998 . . . . 5 2nd :Vā€“ontoā†’V
12 fofun 6806 . . . . 5 (2nd :Vā€“ontoā†’V ā†’ Fun 2nd )
1311, 12ax-mp 5 . . . 4 Fun 2nd
14 funres 6590 . . . 4 (Fun 2nd ā†’ Fun (2nd ā†¾ (V Ɨ V)))
1513, 14mp1i 13 . . 3 (šœ‘ ā†’ Fun (2nd ā†¾ (V Ɨ V)))
16 fsuppcurry1.1 . . . 4 (šœ‘ ā†’ š¹ finSupp š‘)
1716fsuppimpd 9371 . . 3 (šœ‘ ā†’ (š¹ supp š‘) āˆˆ Fin)
18 imafi 9177 . . 3 ((Fun (2nd ā†¾ (V Ɨ V)) āˆ§ (š¹ supp š‘) āˆˆ Fin) ā†’ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin)
1915, 17, 18syl2anc 584 . 2 (šœ‘ ā†’ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin)
20 ovexd 7446 . . . 4 ((šœ‘ āˆ§ š‘¦ āˆˆ šµ) ā†’ (š¶š¹š‘¦) āˆˆ V)
2120, 4fmptd 7115 . . 3 (šœ‘ ā†’ šŗ:šµāŸ¶V)
22 eldif 3958 . . . 4 (š‘¦ āˆˆ (šµ āˆ– ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))) ā†” (š‘¦ āˆˆ šµ āˆ§ Ā¬ š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))))
23 fsuppcurry1.c . . . . . . . . . . . 12 (šœ‘ ā†’ š¶ āˆˆ š“)
2423ad2antrr 724 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š¶ āˆˆ š“)
25 simplr 767 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š‘¦ āˆˆ šµ)
2624, 25opelxpd 5715 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āŸØš¶, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
27 df-ov 7414 . . . . . . . . . . 11 (š¶š¹š‘¦) = (š¹ā€˜āŸØš¶, š‘¦āŸ©)
28 ovexd 7446 . . . . . . . . . . . . 13 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š¶š¹š‘¦) āˆˆ V)
291, 2, 25, 28fvmptd3 7021 . . . . . . . . . . . 12 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (šŗā€˜š‘¦) = (š¶š¹š‘¦))
30 simpr 485 . . . . . . . . . . . . 13 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ Ā¬ (šŗā€˜š‘¦) = š‘)
3130neqned 2947 . . . . . . . . . . . 12 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (šŗā€˜š‘¦) ā‰  š‘)
3229, 31eqnetrrd 3009 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š¶š¹š‘¦) ā‰  š‘)
3327, 32eqnetrrid 3016 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š¹ā€˜āŸØš¶, š‘¦āŸ©) ā‰  š‘)
34 fsuppcurry1.f . . . . . . . . . . . 12 (šœ‘ ā†’ š¹ Fn (š“ Ɨ šµ))
35 fsuppcurry1.a . . . . . . . . . . . . 13 (šœ‘ ā†’ š“ āˆˆ š‘‰)
3635, 5xpexd 7740 . . . . . . . . . . . 12 (šœ‘ ā†’ (š“ Ɨ šµ) āˆˆ V)
37 elsuppfn 8158 . . . . . . . . . . . 12 ((š¹ Fn (š“ Ɨ šµ) āˆ§ (š“ Ɨ šµ) āˆˆ V āˆ§ š‘ āˆˆ š‘ˆ) ā†’ (āŸØš¶, š‘¦āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš¶, š‘¦āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš¶, š‘¦āŸ©) ā‰  š‘)))
3834, 36, 10, 37syl3anc 1371 . . . . . . . . . . 11 (šœ‘ ā†’ (āŸØš¶, š‘¦āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš¶, š‘¦āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš¶, š‘¦āŸ©) ā‰  š‘)))
3938ad2antrr 724 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (āŸØš¶, š‘¦āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš¶, š‘¦āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš¶, š‘¦āŸ©) ā‰  š‘)))
4026, 33, 39mpbir2and 711 . . . . . . . . 9 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āŸØš¶, š‘¦āŸ© āˆˆ (š¹ supp š‘))
41 simpr 485 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ š‘§ = āŸØš¶, š‘¦āŸ©)
4241fveq2d 6895 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ ((2nd ā†¾ (V Ɨ V))ā€˜š‘§) = ((2nd ā†¾ (V Ɨ V))ā€˜āŸØš¶, š‘¦āŸ©))
43 xpss 5692 . . . . . . . . . . . 12 (š“ Ɨ šµ) āŠ† (V Ɨ V)
4426adantr 481 . . . . . . . . . . . 12 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ āŸØš¶, š‘¦āŸ© āˆˆ (š“ Ɨ šµ))
4543, 44sselid 3980 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ āŸØš¶, š‘¦āŸ© āˆˆ (V Ɨ V))
4645fvresd 6911 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ ((2nd ā†¾ (V Ɨ V))ā€˜āŸØš¶, š‘¦āŸ©) = (2nd ā€˜āŸØš¶, š‘¦āŸ©))
4724adantr 481 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ š¶ āˆˆ š“)
4825adantr 481 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ š‘¦ āˆˆ šµ)
49 op2ndg 7990 . . . . . . . . . . 11 ((š¶ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ (2nd ā€˜āŸØš¶, š‘¦āŸ©) = š‘¦)
5047, 48, 49syl2anc 584 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ (2nd ā€˜āŸØš¶, š‘¦āŸ©) = š‘¦)
5142, 46, 503eqtrd 2776 . . . . . . . . 9 ((((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš¶, š‘¦āŸ©) ā†’ ((2nd ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦)
5240, 51rspcedeq1vd 3618 . . . . . . . 8 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āˆƒš‘§ āˆˆ (š¹ supp š‘)((2nd ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦)
53 fofn 6807 . . . . . . . . . . . . 13 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
54 fnresin 31888 . . . . . . . . . . . . 13 (2nd Fn V ā†’ (2nd ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (2nd ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V))
56 ssv 4006 . . . . . . . . . . . . . 14 (V Ɨ V) āŠ† V
57 sseqin2 4215 . . . . . . . . . . . . . 14 ((V Ɨ V) āŠ† V ā†” (V āˆ© (V Ɨ V)) = (V Ɨ V))
5856, 57mpbi 229 . . . . . . . . . . . . 13 (V āˆ© (V Ɨ V)) = (V Ɨ V)
5958fneq2i 6647 . . . . . . . . . . . 12 ((2nd ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V)) ā†” (2nd ā†¾ (V Ɨ V)) Fn (V Ɨ V))
6055, 59mpbi 229 . . . . . . . . . . 11 (2nd ā†¾ (V Ɨ V)) Fn (V Ɨ V)
6160a1i 11 . . . . . . . . . 10 (šœ‘ ā†’ (2nd ā†¾ (V Ɨ V)) Fn (V Ɨ V))
62 suppssdm 8164 . . . . . . . . . . . 12 (š¹ supp š‘) āŠ† dom š¹
6334fndmd 6654 . . . . . . . . . . . 12 (šœ‘ ā†’ dom š¹ = (š“ Ɨ šµ))
6462, 63sseqtrid 4034 . . . . . . . . . . 11 (šœ‘ ā†’ (š¹ supp š‘) āŠ† (š“ Ɨ šµ))
6564, 43sstrdi 3994 . . . . . . . . . 10 (šœ‘ ā†’ (š¹ supp š‘) āŠ† (V Ɨ V))
6661, 65fvelimabd 6965 . . . . . . . . 9 (šœ‘ ā†’ (š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†” āˆƒš‘§ āˆˆ (š¹ supp š‘)((2nd ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦))
6766ad2antrr 724 . . . . . . . 8 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†” āˆƒš‘§ āˆˆ (š¹ supp š‘)((2nd ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦))
6852, 67mpbird 256 . . . . . . 7 (((šœ‘ āˆ§ š‘¦ āˆˆ šµ) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))
6968ex 413 . . . . . 6 ((šœ‘ āˆ§ š‘¦ āˆˆ šµ) ā†’ (Ā¬ (šŗā€˜š‘¦) = š‘ ā†’ š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))))
7069con1d 145 . . . . 5 ((šœ‘ āˆ§ š‘¦ āˆˆ šµ) ā†’ (Ā¬ š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†’ (šŗā€˜š‘¦) = š‘))
7170impr 455 . . . 4 ((šœ‘ āˆ§ (š‘¦ āˆˆ šµ āˆ§ Ā¬ š‘¦ āˆˆ ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ (šŗā€˜š‘¦) = š‘)
7222, 71sylan2b 594 . . 3 ((šœ‘ āˆ§ š‘¦ āˆˆ (šµ āˆ– ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ (šŗā€˜š‘¦) = š‘)
7321, 72suppss 8181 . 2 (šœ‘ ā†’ (šŗ supp š‘) āŠ† ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))
74 suppssfifsupp 9380 . 2 (((šŗ āˆˆ V āˆ§ Fun šŗ āˆ§ š‘ āˆˆ š‘ˆ) āˆ§ (((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin āˆ§ (šŗ supp š‘) āŠ† ((2nd ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ šŗ finSupp š‘)
757, 9, 10, 19, 73, 74syl32anc 1378 1 (šœ‘ ā†’ šŗ finSupp š‘)
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106   ā‰  wne 2940  āˆƒwrex 3070  Vcvv 3474   āˆ– cdif 3945   āˆ© cin 3947   āŠ† wss 3948  āŸØcop 4634   class class class wbr 5148   ā†¦ cmpt 5231   Ɨ cxp 5674  dom cdm 5676   ā†¾ cres 5678   ā€œ cima 5679  Fun wfun 6537   Fn wfn 6538  ā€“ontoā†’wfo 6541  ā€˜cfv 6543  (class class class)co 7411  2nd c2nd 7976   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-supp 8149  df-1o 8468  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  fedgmullem2  32774
  Copyright terms: Public domain W3C validator