Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry1 Structured version   Visualization version   GIF version

Theorem fsuppcurry1 32699
Description: Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry1.g 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
fsuppcurry1.z (𝜑𝑍𝑈)
fsuppcurry1.a (𝜑𝐴𝑉)
fsuppcurry1.b (𝜑𝐵𝑊)
fsuppcurry1.f (𝜑𝐹 Fn (𝐴 × 𝐵))
fsuppcurry1.c (𝜑𝐶𝐴)
fsuppcurry1.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppcurry1 (𝜑𝐺 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑈(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppcurry1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry1.g . . . 4 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
2 oveq2 7349 . . . . 5 (𝑥 = 𝑦 → (𝐶𝐹𝑥) = (𝐶𝐹𝑦))
32cbvmptv 5190 . . . 4 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
41, 3eqtri 2754 . . 3 𝐺 = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
5 fsuppcurry1.b . . . 4 (𝜑𝐵𝑊)
65mptexd 7153 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝐶𝐹𝑦)) ∈ V)
74, 6eqeltrid 2835 . 2 (𝜑𝐺 ∈ V)
81funmpt2 6515 . . 3 Fun 𝐺
98a1i 11 . 2 (𝜑 → Fun 𝐺)
10 fsuppcurry1.z . 2 (𝜑𝑍𝑈)
11 fo2nd 7937 . . . . 5 2nd :V–onto→V
12 fofun 6731 . . . . 5 (2nd :V–onto→V → Fun 2nd )
1311, 12ax-mp 5 . . . 4 Fun 2nd
14 funres 6518 . . . 4 (Fun 2nd → Fun (2nd ↾ (V × V)))
1513, 14mp1i 13 . . 3 (𝜑 → Fun (2nd ↾ (V × V)))
16 fsuppcurry1.1 . . . 4 (𝜑𝐹 finSupp 𝑍)
1716fsuppimpd 9248 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 imafi 9194 . . 3 ((Fun (2nd ↾ (V × V)) ∧ (𝐹 supp 𝑍) ∈ Fin) → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
1915, 17, 18syl2anc 584 . 2 (𝜑 → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
20 ovexd 7376 . . . 4 ((𝜑𝑦𝐵) → (𝐶𝐹𝑦) ∈ V)
2120, 4fmptd 7042 . . 3 (𝜑𝐺:𝐵⟶V)
22 eldif 3907 . . . 4 (𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
23 fsuppcurry1.c . . . . . . . . . . . 12 (𝜑𝐶𝐴)
2423ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝐶𝐴)
25 simplr 768 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦𝐵)
2624, 25opelxpd 5650 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
27 df-ov 7344 . . . . . . . . . . 11 (𝐶𝐹𝑦) = (𝐹‘⟨𝐶, 𝑦⟩)
28 ovexd 7376 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ∈ V)
291, 2, 25, 28fvmptd3 6947 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = (𝐶𝐹𝑦))
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ¬ (𝐺𝑦) = 𝑍)
3130neqned 2935 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) ≠ 𝑍)
3229, 31eqnetrrd 2996 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ≠ 𝑍)
3327, 32eqnetrrid 3003 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)
34 fsuppcurry1.f . . . . . . . . . . . 12 (𝜑𝐹 Fn (𝐴 × 𝐵))
35 fsuppcurry1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
3635, 5xpexd 7679 . . . . . . . . . . . 12 (𝜑 → (𝐴 × 𝐵) ∈ V)
37 elsuppfn 8095 . . . . . . . . . . . 12 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝑍𝑈) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3834, 36, 10, 37syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3938ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
4026, 33, 39mpbir2and 713 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍))
41 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑧 = ⟨𝐶, 𝑦⟩)
4241fveq2d 6821 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩))
43 xpss 5627 . . . . . . . . . . . 12 (𝐴 × 𝐵) ⊆ (V × V)
4426adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
4543, 44sselid 3927 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (V × V))
4645fvresd 6837 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩) = (2nd ‘⟨𝐶, 𝑦⟩))
4724adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝐶𝐴)
4825adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑦𝐵)
49 op2ndg 7929 . . . . . . . . . . 11 ((𝐶𝐴𝑦𝐵) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5047, 48, 49syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5142, 46, 503eqtrd 2770 . . . . . . . . 9 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = 𝑦)
5240, 51rspcedeq1vd 3579 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦)
53 fofn 6732 . . . . . . . . . . . . 13 (2nd :V–onto→V → 2nd Fn V)
54 fnresin 32599 . . . . . . . . . . . . 13 (2nd Fn V → (2nd ↾ (V × V)) Fn (V ∩ (V × V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (2nd ↾ (V × V)) Fn (V ∩ (V × V))
56 ssv 3954 . . . . . . . . . . . . . 14 (V × V) ⊆ V
57 sseqin2 4168 . . . . . . . . . . . . . 14 ((V × V) ⊆ V ↔ (V ∩ (V × V)) = (V × V))
5856, 57mpbi 230 . . . . . . . . . . . . 13 (V ∩ (V × V)) = (V × V)
5958fneq2i 6574 . . . . . . . . . . . 12 ((2nd ↾ (V × V)) Fn (V ∩ (V × V)) ↔ (2nd ↾ (V × V)) Fn (V × V))
6055, 59mpbi 230 . . . . . . . . . . 11 (2nd ↾ (V × V)) Fn (V × V)
6160a1i 11 . . . . . . . . . 10 (𝜑 → (2nd ↾ (V × V)) Fn (V × V))
62 suppssdm 8102 . . . . . . . . . . . 12 (𝐹 supp 𝑍) ⊆ dom 𝐹
6334fndmd 6581 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (𝐴 × 𝐵))
6462, 63sseqtrid 3972 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐴 × 𝐵))
6564, 43sstrdi 3942 . . . . . . . . . 10 (𝜑 → (𝐹 supp 𝑍) ⊆ (V × V))
6661, 65fvelimabd 6890 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6766ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6852, 67mpbird 257 . . . . . . 7 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
6968ex 412 . . . . . 6 ((𝜑𝑦𝐵) → (¬ (𝐺𝑦) = 𝑍𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
7069con1d 145 . . . . 5 ((𝜑𝑦𝐵) → (¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) → (𝐺𝑦) = 𝑍))
7170impr 454 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7222, 71sylan2b 594 . . 3 ((𝜑𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7321, 72suppss 8119 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
74 suppssfifsupp 9259 . 2 (((𝐺 ∈ V ∧ Fun 𝐺𝑍𝑈) ∧ (((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → 𝐺 finSupp 𝑍)
757, 9, 10, 19, 73, 74syl32anc 1380 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cdif 3894  cin 3896  wss 3897  cop 4577   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611  cres 5613  cima 5614  Fun wfun 6470   Fn wfn 6471  ontowfo 6474  cfv 6476  (class class class)co 7341  2nd c2nd 7915   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-supp 8086  df-1o 8380  df-en 8865  df-dom 8866  df-fin 8868  df-fsupp 9241
This theorem is referenced by:  fedgmullem2  33635
  Copyright terms: Public domain W3C validator