MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3578
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3155 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3572 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057
This theorem is referenced by:  brimralrspcev  5147  rexanre  15249  rexico  15256  rlim2lt  15399  rlim3  15400  rlimconst  15446  rlimcn3  15492  reccn2  15499  cn1lem  15500  o1rlimmul  15521  caucvgrlem  15575  divrcnv  15754  chfacffsupp  22766  chfacfscmulfsupp  22769  chfacfpmmulfsupp  22773  tsmsgsum  24049  tsmsres  24054  tsmsxp  24065  metcnpi3  24456  nrginvrcnlem  24601  nghmcn  24655  metdscn  24767  elcncf1di  24810  volcn  25529  itg2cnlem2  25685  abelthlem8  26371  divlogrlim  26566  cxplim  26904  cxploglim  26910  ftalem1  27005  ftalem2  27006  dchrisum0  27453  nmcvcn  30667  blocni  30777  0cnop  31951  0cnfn  31952  idcnop  31953  lnconi  32005  qqhcn  33996  dnicn  36526  ftc1anc  37741  limsupre3uzlem  45773  fourierdlem87  46231
  Copyright terms: Public domain W3C validator