MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3591
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3156 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3585 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054
This theorem is referenced by:  brimralrspcev  5163  rexanre  15289  rexico  15296  rlim2lt  15439  rlim3  15440  rlimconst  15486  rlimcn3  15532  reccn2  15539  cn1lem  15540  o1rlimmul  15561  caucvgrlem  15615  divrcnv  15794  chfacffsupp  22719  chfacfscmulfsupp  22722  chfacfpmmulfsupp  22726  tsmsgsum  24002  tsmsres  24007  tsmsxp  24018  metcnpi3  24410  nrginvrcnlem  24555  nghmcn  24609  metdscn  24721  elcncf1di  24764  volcn  25483  itg2cnlem2  25639  abelthlem8  26325  divlogrlim  26520  cxplim  26858  cxploglim  26864  ftalem1  26959  ftalem2  26960  dchrisum0  27407  nmcvcn  30597  blocni  30707  0cnop  31881  0cnfn  31882  idcnop  31883  lnconi  31935  qqhcn  33954  dnicn  36453  ftc1anc  37668  limsupre3uzlem  45706  fourierdlem87  46164
  Copyright terms: Public domain W3C validator