MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3579
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3156 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3573 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058
This theorem is referenced by:  brimralrspcev  5156  rexanre  15261  rexico  15268  rlim2lt  15411  rlim3  15412  rlimconst  15458  rlimcn3  15504  reccn2  15511  cn1lem  15512  o1rlimmul  15533  caucvgrlem  15587  divrcnv  15766  chfacffsupp  22791  chfacfscmulfsupp  22794  chfacfpmmulfsupp  22798  tsmsgsum  24074  tsmsres  24079  tsmsxp  24090  metcnpi3  24481  nrginvrcnlem  24626  nghmcn  24680  metdscn  24792  elcncf1di  24835  volcn  25554  itg2cnlem2  25710  abelthlem8  26396  divlogrlim  26591  cxplim  26929  cxploglim  26935  ftalem1  27030  ftalem2  27031  dchrisum0  27478  nmcvcn  30696  blocni  30806  0cnop  31980  0cnfn  31981  idcnop  31982  lnconi  32034  qqhcn  34076  dnicn  36608  ftc1anc  37814  limsupre3uzlem  45895  fourierdlem87  46353
  Copyright terms: Public domain W3C validator