![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version |
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
Ref | Expression |
---|---|
rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
3 | 2 | ralbidv 3184 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
4 | 3 | rspcev 3635 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: brimralrspcev 5227 rexanre 15395 rexico 15402 rlim2lt 15543 rlim3 15544 rlimconst 15590 rlimcn3 15636 reccn2 15643 cn1lem 15644 o1rlimmul 15665 caucvgrlem 15721 divrcnv 15900 chfacffsupp 22883 chfacfscmulfsupp 22886 chfacfpmmulfsupp 22890 tsmsgsum 24168 tsmsres 24173 tsmsxp 24184 metcnpi3 24580 nrginvrcnlem 24733 nghmcn 24787 metdscn 24897 elcncf1di 24940 volcn 25660 itg2cnlem2 25817 abelthlem8 26501 divlogrlim 26695 cxplim 27033 cxploglim 27039 ftalem1 27134 ftalem2 27135 dchrisum0 27582 nmcvcn 30727 blocni 30837 0cnop 32011 0cnfn 32012 idcnop 32013 lnconi 32065 qqhcn 33937 dnicn 36458 ftc1anc 37661 limsupre3uzlem 45656 fourierdlem87 46114 |
Copyright terms: Public domain | W3C validator |