| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 3 | 2 | ralbidv 3152 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
| 4 | 3 | rspcev 3579 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: brimralrspcev 5156 rexanre 15273 rexico 15280 rlim2lt 15423 rlim3 15424 rlimconst 15470 rlimcn3 15516 reccn2 15523 cn1lem 15524 o1rlimmul 15545 caucvgrlem 15599 divrcnv 15778 chfacffsupp 22760 chfacfscmulfsupp 22763 chfacfpmmulfsupp 22767 tsmsgsum 24043 tsmsres 24048 tsmsxp 24059 metcnpi3 24451 nrginvrcnlem 24596 nghmcn 24650 metdscn 24762 elcncf1di 24805 volcn 25524 itg2cnlem2 25680 abelthlem8 26366 divlogrlim 26561 cxplim 26899 cxploglim 26905 ftalem1 27000 ftalem2 27001 dchrisum0 27448 nmcvcn 30658 blocni 30768 0cnop 31942 0cnfn 31943 idcnop 31944 lnconi 31996 qqhcn 33977 dnicn 36485 ftc1anc 37700 limsupre3uzlem 45736 fourierdlem87 46194 |
| Copyright terms: Public domain | W3C validator |