MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3585
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3152 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3579 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054
This theorem is referenced by:  brimralrspcev  5156  rexanre  15273  rexico  15280  rlim2lt  15423  rlim3  15424  rlimconst  15470  rlimcn3  15516  reccn2  15523  cn1lem  15524  o1rlimmul  15545  caucvgrlem  15599  divrcnv  15778  chfacffsupp  22760  chfacfscmulfsupp  22763  chfacfpmmulfsupp  22767  tsmsgsum  24043  tsmsres  24048  tsmsxp  24059  metcnpi3  24451  nrginvrcnlem  24596  nghmcn  24650  metdscn  24762  elcncf1di  24805  volcn  25524  itg2cnlem2  25680  abelthlem8  26366  divlogrlim  26561  cxplim  26899  cxploglim  26905  ftalem1  27000  ftalem2  27001  dchrisum0  27448  nmcvcn  30658  blocni  30768  0cnop  31942  0cnfn  31943  idcnop  31944  lnconi  31996  qqhcn  33977  dnicn  36485  ftc1anc  37700  limsupre3uzlem  45736  fourierdlem87  46194
  Copyright terms: Public domain W3C validator