| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 3 | 2 | ralbidv 3155 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
| 4 | 3 | rspcev 3572 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: brimralrspcev 5147 rexanre 15249 rexico 15256 rlim2lt 15399 rlim3 15400 rlimconst 15446 rlimcn3 15492 reccn2 15499 cn1lem 15500 o1rlimmul 15521 caucvgrlem 15575 divrcnv 15754 chfacffsupp 22766 chfacfscmulfsupp 22769 chfacfpmmulfsupp 22773 tsmsgsum 24049 tsmsres 24054 tsmsxp 24065 metcnpi3 24456 nrginvrcnlem 24601 nghmcn 24655 metdscn 24767 elcncf1di 24810 volcn 25529 itg2cnlem2 25685 abelthlem8 26371 divlogrlim 26566 cxplim 26904 cxploglim 26910 ftalem1 27005 ftalem2 27006 dchrisum0 27453 nmcvcn 30667 blocni 30777 0cnop 31951 0cnfn 31952 idcnop 31953 lnconi 32005 qqhcn 33996 dnicn 36526 ftc1anc 37741 limsupre3uzlem 45773 fourierdlem87 46231 |
| Copyright terms: Public domain | W3C validator |