MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3617
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3177 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3612 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071
This theorem is referenced by:  brimralrspcev  5209  rexanre  15295  rexico  15302  rlim2lt  15443  rlim3  15444  rlimconst  15490  rlimcn3  15536  reccn2  15543  cn1lem  15544  o1rlimmul  15565  caucvgrlem  15621  divrcnv  15800  chfacffsupp  22365  chfacfscmulfsupp  22368  chfacfpmmulfsupp  22372  tsmsgsum  23650  tsmsres  23655  tsmsxp  23666  metcnpi3  24062  nrginvrcnlem  24215  nghmcn  24269  metdscn  24379  elcncf1di  24418  volcn  25130  itg2cnlem2  25287  abelthlem8  25958  divlogrlim  26150  cxplim  26483  cxploglim  26489  ftalem1  26584  ftalem2  26585  dchrisum0  27030  nmcvcn  29986  blocni  30096  0cnop  31270  0cnfn  31271  idcnop  31272  lnconi  31324  qqhcn  33040  dnicn  35454  ftc1anc  36655  limsupre3uzlem  44530  fourierdlem87  44988
  Copyright terms: Public domain W3C validator