| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 3 | 2 | ralbidv 3164 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
| 4 | 3 | rspcev 3606 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: brimralrspcev 5185 rexanre 15370 rexico 15377 rlim2lt 15518 rlim3 15519 rlimconst 15565 rlimcn3 15611 reccn2 15618 cn1lem 15619 o1rlimmul 15640 caucvgrlem 15694 divrcnv 15873 chfacffsupp 22799 chfacfscmulfsupp 22802 chfacfpmmulfsupp 22806 tsmsgsum 24082 tsmsres 24087 tsmsxp 24098 metcnpi3 24490 nrginvrcnlem 24635 nghmcn 24689 metdscn 24801 elcncf1di 24844 volcn 25564 itg2cnlem2 25720 abelthlem8 26406 divlogrlim 26601 cxplim 26939 cxploglim 26945 ftalem1 27040 ftalem2 27041 dchrisum0 27488 nmcvcn 30681 blocni 30791 0cnop 31965 0cnfn 31966 idcnop 31967 lnconi 32019 qqhcn 34027 dnicn 36515 ftc1anc 37730 limsupre3uzlem 45731 fourierdlem87 46189 |
| Copyright terms: Public domain | W3C validator |