| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 3 | 2 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
| 4 | 3 | rspcev 3585 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: brimralrspcev 5163 rexanre 15289 rexico 15296 rlim2lt 15439 rlim3 15440 rlimconst 15486 rlimcn3 15532 reccn2 15539 cn1lem 15540 o1rlimmul 15561 caucvgrlem 15615 divrcnv 15794 chfacffsupp 22719 chfacfscmulfsupp 22722 chfacfpmmulfsupp 22726 tsmsgsum 24002 tsmsres 24007 tsmsxp 24018 metcnpi3 24410 nrginvrcnlem 24555 nghmcn 24609 metdscn 24721 elcncf1di 24764 volcn 25483 itg2cnlem2 25639 abelthlem8 26325 divlogrlim 26520 cxplim 26858 cxploglim 26864 ftalem1 26959 ftalem2 26960 dchrisum0 27407 nmcvcn 30597 blocni 30707 0cnop 31881 0cnfn 31882 idcnop 31883 lnconi 31935 qqhcn 33954 dnicn 36453 ftc1anc 37668 limsupre3uzlem 45706 fourierdlem87 46164 |
| Copyright terms: Public domain | W3C validator |