MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceaimv Structured version   Visualization version   GIF version

Theorem rspceaimv 3616
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
Hypothesis
Ref Expression
rspceaimv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspceaimv ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem rspceaimv
StepHypRef Expression
1 rspceaimv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21imbi1d 341 . . 3 (𝑥 = 𝐴 → ((𝜑𝜒) ↔ (𝜓𝜒)))
32ralbidv 3177 . 2 (𝑥 = 𝐴 → (∀𝑦𝐶 (𝜑𝜒) ↔ ∀𝑦𝐶 (𝜓𝜒)))
43rspcev 3612 1 ((𝐴𝐵 ∧ ∀𝑦𝐶 (𝜓𝜒)) → ∃𝑥𝐵𝑦𝐶 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071
This theorem is referenced by:  brimralrspcev  5208  rexanre  15289  rexico  15296  rlim2lt  15437  rlim3  15438  rlimconst  15484  rlimcn3  15530  reccn2  15537  cn1lem  15538  o1rlimmul  15559  caucvgrlem  15615  divrcnv  15794  chfacffsupp  22349  chfacfscmulfsupp  22352  chfacfpmmulfsupp  22356  tsmsgsum  23634  tsmsres  23639  tsmsxp  23650  metcnpi3  24046  nrginvrcnlem  24199  nghmcn  24253  metdscn  24363  elcncf1di  24402  volcn  25114  itg2cnlem2  25271  abelthlem8  25942  divlogrlim  26134  cxplim  26465  cxploglim  26471  ftalem1  26566  ftalem2  26567  dchrisum0  27012  nmcvcn  29935  blocni  30045  0cnop  31219  0cnfn  31220  idcnop  31221  lnconi  31273  qqhcn  32959  dnicn  35356  ftc1anc  36557  limsupre3uzlem  44437  fourierdlem87  44895
  Copyright terms: Public domain W3C validator