Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version |
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
Ref | Expression |
---|---|
rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi1d 342 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
3 | 2 | ralbidv 3123 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
4 | 3 | rspcev 3561 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 |
This theorem is referenced by: brimralrspcev 5140 rexanre 15056 rexico 15063 rlim2lt 15204 rlim3 15205 rlimconst 15251 rlimcn3 15297 reccn2 15304 cn1lem 15305 o1rlimmul 15326 caucvgrlem 15382 divrcnv 15562 chfacffsupp 22003 chfacfscmulfsupp 22006 chfacfpmmulfsupp 22010 tsmsgsum 23288 tsmsres 23293 tsmsxp 23304 metcnpi3 23700 nrginvrcnlem 23853 nghmcn 23907 metdscn 24017 elcncf1di 24056 volcn 24768 itg2cnlem2 24925 abelthlem8 25596 divlogrlim 25788 cxplim 26119 cxploglim 26125 ftalem1 26220 ftalem2 26221 dchrisum0 26666 nmcvcn 29053 blocni 29163 0cnop 30337 0cnfn 30338 idcnop 30339 lnconi 30391 qqhcn 31937 dnicn 34668 ftc1anc 35854 limsupre3uzlem 43247 fourierdlem87 43705 |
Copyright terms: Public domain | W3C validator |