Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version |
Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
Ref | Expression |
---|---|
rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi1d 342 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
3 | 2 | ralbidv 3113 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
4 | 3 | rspcev 3562 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∀wral 3065 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 |
This theorem is referenced by: brimralrspcev 5136 rexanre 15067 rexico 15074 rlim2lt 15215 rlim3 15216 rlimconst 15262 rlimcn3 15308 reccn2 15315 cn1lem 15316 o1rlimmul 15337 caucvgrlem 15393 divrcnv 15573 chfacffsupp 22014 chfacfscmulfsupp 22017 chfacfpmmulfsupp 22021 tsmsgsum 23299 tsmsres 23304 tsmsxp 23315 metcnpi3 23711 nrginvrcnlem 23864 nghmcn 23918 metdscn 24028 elcncf1di 24067 volcn 24779 itg2cnlem2 24936 abelthlem8 25607 divlogrlim 25799 cxplim 26130 cxploglim 26136 ftalem1 26231 ftalem2 26232 dchrisum0 26677 nmcvcn 29066 blocni 29176 0cnop 30350 0cnfn 30351 idcnop 30352 lnconi 30404 qqhcn 31950 dnicn 34681 ftc1anc 35867 limsupre3uzlem 43283 fourierdlem87 43741 |
Copyright terms: Public domain | W3C validator |