| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceaimv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| rspceaimv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspceaimv | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceaimv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) |
| 3 | 2 | ralbidv 3156 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐶 (𝜑 → 𝜒) ↔ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒))) |
| 4 | 3 | rspcev 3573 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐶 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: brimralrspcev 5156 rexanre 15261 rexico 15268 rlim2lt 15411 rlim3 15412 rlimconst 15458 rlimcn3 15504 reccn2 15511 cn1lem 15512 o1rlimmul 15533 caucvgrlem 15587 divrcnv 15766 chfacffsupp 22791 chfacfscmulfsupp 22794 chfacfpmmulfsupp 22798 tsmsgsum 24074 tsmsres 24079 tsmsxp 24090 metcnpi3 24481 nrginvrcnlem 24626 nghmcn 24680 metdscn 24792 elcncf1di 24835 volcn 25554 itg2cnlem2 25710 abelthlem8 26396 divlogrlim 26591 cxplim 26929 cxploglim 26935 ftalem1 27030 ftalem2 27031 dchrisum0 27478 nmcvcn 30696 blocni 30806 0cnop 31980 0cnfn 31981 idcnop 31982 lnconi 32034 qqhcn 34076 dnicn 36608 ftc1anc 37814 limsupre3uzlem 45895 fourierdlem87 46353 |
| Copyright terms: Public domain | W3C validator |