MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2eq1n2dvds Structured version   Visualization version   GIF version

Theorem mod2eq1n2dvds 16276
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zeo 12580 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 zre 12493 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 2rp 12916 . . . . . . . . 9 2 ∈ ℝ+
4 mod0 13798 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
52, 3, 4sylancl 586 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
65biimpar 477 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 mod 2) = 0)
7 eqeq1 2733 . . . . . . . 8 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 ↔ 0 = 1))
8 0ne1 12217 . . . . . . . . 9 0 ≠ 1
9 eqneqall 2936 . . . . . . . . 9 (0 = 1 → (0 ≠ 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9mpi 20 . . . . . . . 8 (0 = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
117, 10biimtrdi 253 . . . . . . 7 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
126, 11syl 17 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1312expcom 413 . . . . 5 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
14 peano2zm 12536 . . . . . . . . 9 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
15 zcn 12494 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 xp1d2m1eqxm1d2 12396 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1715, 16syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1817eleq1d 2813 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1918biimpd 229 . . . . . . . . 9 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℤ))
2014, 19mpan9 506 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 oveq2 7361 . . . . . . . . . . 11 (𝑛 = ((𝑁 − 1) / 2) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2221adantl 481 . . . . . . . . . 10 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2322oveq1d 7368 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
24 peano2zm 12536 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2524zcnd 12599 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
26 2cnd 12224 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ∈ ℂ)
27 2ne0 12250 . . . . . . . . . . . . . 14 2 ≠ 0
2827a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ≠ 0)
2925, 26, 28divcan2d 11920 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
3029oveq1d 7368 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
31 npcan1 11563 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3215, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3330, 32eqtrd 2764 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3433ad2antlr 727 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3523, 34eqtrd 2764 . . . . . . . 8 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = 𝑁)
3620, 35rspcedeq1vd 3586 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
3736a1d 25 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
3837ex 412 . . . . 5 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
3913, 38jaoi 857 . . . 4 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
401, 39mpcom 38 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
41 oveq1 7360 . . . . . 6 (𝑁 = ((2 · 𝑛) + 1) → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
4241eqcoms 2737 . . . . 5 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
43 2cnd 12224 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
44 zcn 12494 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4543, 44mulcomd 11155 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
4645oveq1d 7368 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = ((𝑛 · 2) mod 2))
47 mulmod0 13799 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑛 · 2) mod 2) = 0)
483, 47mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝑛 · 2) mod 2) = 0)
4946, 48eqtrd 2764 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = 0)
5049oveq1d 7368 . . . . . . . . 9 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = (0 + 1))
51 0p1e1 12263 . . . . . . . . 9 (0 + 1) = 1
5250, 51eqtrdi 2780 . . . . . . . 8 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = 1)
5352oveq1d 7368 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (1 mod 2))
54 2z 12525 . . . . . . . . . . 11 2 ∈ ℤ
5554a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
5755, 56zmulcld 12604 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
5857zred 12598 . . . . . . . 8 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℝ)
59 1red 11135 . . . . . . . 8 (𝑛 ∈ ℤ → 1 ∈ ℝ)
603a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → 2 ∈ ℝ+)
61 modaddmod 13834 . . . . . . . 8 (((2 · 𝑛) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+) → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
6258, 59, 60, 61syl3anc 1373 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
63 2re 12220 . . . . . . . . 9 2 ∈ ℝ
64 1lt2 12312 . . . . . . . . 9 1 < 2
6563, 64pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 1 < 2)
66 1mod 13825 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1)
6765, 66mp1i 13 . . . . . . 7 (𝑛 ∈ ℤ → (1 mod 2) = 1)
6853, 62, 673eqtr3d 2772 . . . . . 6 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) mod 2) = 1)
6968adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) mod 2) = 1)
7042, 69sylan9eqr 2786 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (𝑁 mod 2) = 1)
7170rexlimdva2 3132 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7240, 71impbid 212 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
73 odd2np1 16270 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
7472, 73bitr4d 282 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365   / cdiv 11795  2c2 12201  cz 12489  +crp 12911   mod cmo 13791  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-dvds 16182
This theorem is referenced by:  2lgslem3b1  27328  2lgslem3c1  27329  ex-mod  30411  dig2nn1st  48578  0dig2nn0o  48586  dig2bits  48587
  Copyright terms: Public domain W3C validator