MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2eq1n2dvds Structured version   Visualization version   GIF version

Theorem mod2eq1n2dvds 16323
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zeo 12626 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 zre 12539 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 2rp 12962 . . . . . . . . 9 2 ∈ ℝ+
4 mod0 13844 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
52, 3, 4sylancl 586 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
65biimpar 477 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 mod 2) = 0)
7 eqeq1 2734 . . . . . . . 8 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 ↔ 0 = 1))
8 0ne1 12258 . . . . . . . . 9 0 ≠ 1
9 eqneqall 2937 . . . . . . . . 9 (0 = 1 → (0 ≠ 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9mpi 20 . . . . . . . 8 (0 = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
117, 10biimtrdi 253 . . . . . . 7 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
126, 11syl 17 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1312expcom 413 . . . . 5 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
14 peano2zm 12582 . . . . . . . . 9 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
15 zcn 12540 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 xp1d2m1eqxm1d2 12442 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1715, 16syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1817eleq1d 2814 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1918biimpd 229 . . . . . . . . 9 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℤ))
2014, 19mpan9 506 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 oveq2 7397 . . . . . . . . . . 11 (𝑛 = ((𝑁 − 1) / 2) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2221adantl 481 . . . . . . . . . 10 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2322oveq1d 7404 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
24 peano2zm 12582 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2524zcnd 12645 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
26 2cnd 12265 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ∈ ℂ)
27 2ne0 12291 . . . . . . . . . . . . . 14 2 ≠ 0
2827a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ≠ 0)
2925, 26, 28divcan2d 11966 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
3029oveq1d 7404 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
31 npcan1 11609 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3215, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3330, 32eqtrd 2765 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3433ad2antlr 727 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3523, 34eqtrd 2765 . . . . . . . 8 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = 𝑁)
3620, 35rspcedeq1vd 3598 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
3736a1d 25 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
3837ex 412 . . . . 5 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
3913, 38jaoi 857 . . . 4 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
401, 39mpcom 38 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
41 oveq1 7396 . . . . . 6 (𝑁 = ((2 · 𝑛) + 1) → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
4241eqcoms 2738 . . . . 5 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
43 2cnd 12265 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
44 zcn 12540 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4543, 44mulcomd 11201 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
4645oveq1d 7404 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = ((𝑛 · 2) mod 2))
47 mulmod0 13845 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑛 · 2) mod 2) = 0)
483, 47mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝑛 · 2) mod 2) = 0)
4946, 48eqtrd 2765 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = 0)
5049oveq1d 7404 . . . . . . . . 9 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = (0 + 1))
51 0p1e1 12309 . . . . . . . . 9 (0 + 1) = 1
5250, 51eqtrdi 2781 . . . . . . . 8 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = 1)
5352oveq1d 7404 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (1 mod 2))
54 2z 12571 . . . . . . . . . . 11 2 ∈ ℤ
5554a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
5755, 56zmulcld 12650 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
5857zred 12644 . . . . . . . 8 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℝ)
59 1red 11181 . . . . . . . 8 (𝑛 ∈ ℤ → 1 ∈ ℝ)
603a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → 2 ∈ ℝ+)
61 modaddmod 13880 . . . . . . . 8 (((2 · 𝑛) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+) → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
6258, 59, 60, 61syl3anc 1373 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
63 2re 12261 . . . . . . . . 9 2 ∈ ℝ
64 1lt2 12358 . . . . . . . . 9 1 < 2
6563, 64pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 1 < 2)
66 1mod 13871 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1)
6765, 66mp1i 13 . . . . . . 7 (𝑛 ∈ ℤ → (1 mod 2) = 1)
6853, 62, 673eqtr3d 2773 . . . . . 6 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) mod 2) = 1)
6968adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) mod 2) = 1)
7042, 69sylan9eqr 2787 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (𝑁 mod 2) = 1)
7170rexlimdva2 3137 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7240, 71impbid 212 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
73 odd2np1 16317 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
7472, 73bitr4d 282 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5109  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079   < clt 11214  cmin 11411   / cdiv 11841  2c2 12242  cz 12535  +crp 12957   mod cmo 13837  cdvds 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fl 13760  df-mod 13838  df-dvds 16229
This theorem is referenced by:  2lgslem3b1  27318  2lgslem3c1  27319  ex-mod  30384  dig2nn1st  48584  0dig2nn0o  48592  dig2bits  48593
  Copyright terms: Public domain W3C validator