MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2eq1n2dvds Structured version   Visualization version   GIF version

Theorem mod2eq1n2dvds 16381
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zeo 12702 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 zre 12615 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 2rp 13037 . . . . . . . . 9 2 ∈ ℝ+
4 mod0 13913 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
52, 3, 4sylancl 586 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
65biimpar 477 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 mod 2) = 0)
7 eqeq1 2739 . . . . . . . 8 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 ↔ 0 = 1))
8 0ne1 12335 . . . . . . . . 9 0 ≠ 1
9 eqneqall 2949 . . . . . . . . 9 (0 = 1 → (0 ≠ 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9mpi 20 . . . . . . . 8 (0 = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
117, 10biimtrdi 253 . . . . . . 7 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
126, 11syl 17 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1312expcom 413 . . . . 5 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
14 peano2zm 12658 . . . . . . . . 9 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
15 zcn 12616 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 xp1d2m1eqxm1d2 12518 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1715, 16syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1817eleq1d 2824 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1918biimpd 229 . . . . . . . . 9 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℤ))
2014, 19mpan9 506 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 oveq2 7439 . . . . . . . . . . 11 (𝑛 = ((𝑁 − 1) / 2) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2221adantl 481 . . . . . . . . . 10 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2322oveq1d 7446 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
24 peano2zm 12658 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2524zcnd 12721 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
26 2cnd 12342 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ∈ ℂ)
27 2ne0 12368 . . . . . . . . . . . . . 14 2 ≠ 0
2827a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ≠ 0)
2925, 26, 28divcan2d 12043 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
3029oveq1d 7446 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
31 npcan1 11686 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3215, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3330, 32eqtrd 2775 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3433ad2antlr 727 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3523, 34eqtrd 2775 . . . . . . . 8 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = 𝑁)
3620, 35rspcedeq1vd 3629 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
3736a1d 25 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
3837ex 412 . . . . 5 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
3913, 38jaoi 857 . . . 4 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
401, 39mpcom 38 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
41 oveq1 7438 . . . . . 6 (𝑁 = ((2 · 𝑛) + 1) → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
4241eqcoms 2743 . . . . 5 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
43 2cnd 12342 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
44 zcn 12616 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4543, 44mulcomd 11280 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
4645oveq1d 7446 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = ((𝑛 · 2) mod 2))
47 mulmod0 13914 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑛 · 2) mod 2) = 0)
483, 47mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝑛 · 2) mod 2) = 0)
4946, 48eqtrd 2775 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = 0)
5049oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = (0 + 1))
51 0p1e1 12386 . . . . . . . . 9 (0 + 1) = 1
5250, 51eqtrdi 2791 . . . . . . . 8 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = 1)
5352oveq1d 7446 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (1 mod 2))
54 2z 12647 . . . . . . . . . . 11 2 ∈ ℤ
5554a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
5755, 56zmulcld 12726 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
5857zred 12720 . . . . . . . 8 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℝ)
59 1red 11260 . . . . . . . 8 (𝑛 ∈ ℤ → 1 ∈ ℝ)
603a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → 2 ∈ ℝ+)
61 modaddmod 13947 . . . . . . . 8 (((2 · 𝑛) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+) → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
6258, 59, 60, 61syl3anc 1370 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
63 2re 12338 . . . . . . . . 9 2 ∈ ℝ
64 1lt2 12435 . . . . . . . . 9 1 < 2
6563, 64pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 1 < 2)
66 1mod 13940 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1)
6765, 66mp1i 13 . . . . . . 7 (𝑛 ∈ ℤ → (1 mod 2) = 1)
6853, 62, 673eqtr3d 2783 . . . . . 6 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) mod 2) = 1)
6968adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) mod 2) = 1)
7042, 69sylan9eqr 2797 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (𝑁 mod 2) = 1)
7170rexlimdva2 3155 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7240, 71impbid 212 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
73 odd2np1 16375 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
7472, 73bitr4d 282 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  2c2 12319  cz 12611  +crp 13032   mod cmo 13906  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-dvds 16288
This theorem is referenced by:  2lgslem3b1  27460  2lgslem3c1  27461  ex-mod  30478  dig2nn1st  48455  0dig2nn0o  48463  dig2bits  48464
  Copyright terms: Public domain W3C validator