MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2eq1n2dvds Structured version   Visualization version   GIF version

Theorem mod2eq1n2dvds 16395
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zeo 12729 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 zre 12643 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 2rp 13062 . . . . . . . . 9 2 ∈ ℝ+
4 mod0 13927 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
52, 3, 4sylancl 585 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
65biimpar 477 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 mod 2) = 0)
7 eqeq1 2744 . . . . . . . 8 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 ↔ 0 = 1))
8 0ne1 12364 . . . . . . . . 9 0 ≠ 1
9 eqneqall 2957 . . . . . . . . 9 (0 = 1 → (0 ≠ 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9mpi 20 . . . . . . . 8 (0 = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
117, 10biimtrdi 253 . . . . . . 7 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
126, 11syl 17 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1312expcom 413 . . . . 5 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
14 peano2zm 12686 . . . . . . . . 9 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
15 zcn 12644 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 xp1d2m1eqxm1d2 12547 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1715, 16syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1817eleq1d 2829 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1918biimpd 229 . . . . . . . . 9 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℤ))
2014, 19mpan9 506 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 oveq2 7456 . . . . . . . . . . 11 (𝑛 = ((𝑁 − 1) / 2) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2221adantl 481 . . . . . . . . . 10 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2322oveq1d 7463 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
24 peano2zm 12686 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2524zcnd 12748 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
26 2cnd 12371 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ∈ ℂ)
27 2ne0 12397 . . . . . . . . . . . . . 14 2 ≠ 0
2827a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ≠ 0)
2925, 26, 28divcan2d 12072 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
3029oveq1d 7463 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
31 npcan1 11715 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3215, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3330, 32eqtrd 2780 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3433ad2antlr 726 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3523, 34eqtrd 2780 . . . . . . . 8 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = 𝑁)
3620, 35rspcedeq1vd 3642 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
3736a1d 25 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
3837ex 412 . . . . 5 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
3913, 38jaoi 856 . . . 4 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
401, 39mpcom 38 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
41 oveq1 7455 . . . . . 6 (𝑁 = ((2 · 𝑛) + 1) → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
4241eqcoms 2748 . . . . 5 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
43 2cnd 12371 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
44 zcn 12644 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4543, 44mulcomd 11311 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
4645oveq1d 7463 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = ((𝑛 · 2) mod 2))
47 mulmod0 13928 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑛 · 2) mod 2) = 0)
483, 47mpan2 690 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝑛 · 2) mod 2) = 0)
4946, 48eqtrd 2780 . . . . . . . . . 10 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = 0)
5049oveq1d 7463 . . . . . . . . 9 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = (0 + 1))
51 0p1e1 12415 . . . . . . . . 9 (0 + 1) = 1
5250, 51eqtrdi 2796 . . . . . . . 8 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = 1)
5352oveq1d 7463 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (1 mod 2))
54 2z 12675 . . . . . . . . . . 11 2 ∈ ℤ
5554a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
56 id 22 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
5755, 56zmulcld 12753 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
5857zred 12747 . . . . . . . 8 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℝ)
59 1red 11291 . . . . . . . 8 (𝑛 ∈ ℤ → 1 ∈ ℝ)
603a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → 2 ∈ ℝ+)
61 modaddmod 13961 . . . . . . . 8 (((2 · 𝑛) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+) → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
6258, 59, 60, 61syl3anc 1371 . . . . . . 7 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
63 2re 12367 . . . . . . . . 9 2 ∈ ℝ
64 1lt2 12464 . . . . . . . . 9 1 < 2
6563, 64pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 1 < 2)
66 1mod 13954 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1)
6765, 66mp1i 13 . . . . . . 7 (𝑛 ∈ ℤ → (1 mod 2) = 1)
6853, 62, 673eqtr3d 2788 . . . . . 6 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) mod 2) = 1)
6968adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) mod 2) = 1)
7042, 69sylan9eqr 2802 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (𝑁 mod 2) = 1)
7170rexlimdva2 3163 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7240, 71impbid 212 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
73 odd2np1 16389 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
7472, 73bitr4d 282 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520   / cdiv 11947  2c2 12348  cz 12639  +crp 13057   mod cmo 13920  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-dvds 16303
This theorem is referenced by:  2lgslem3b1  27463  2lgslem3c1  27464  ex-mod  30481  dig2nn1st  48339  0dig2nn0o  48347  dig2bits  48348
  Copyright terms: Public domain W3C validator