Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry2 Structured version   Visualization version   GIF version

Theorem fsuppcurry2 31938
Description: Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry2.g šŗ = (š‘„ āˆˆ š“ ā†¦ (š‘„š¹š¶))
fsuppcurry2.z (šœ‘ ā†’ š‘ āˆˆ š‘ˆ)
fsuppcurry2.a (šœ‘ ā†’ š“ āˆˆ š‘‰)
fsuppcurry2.b (šœ‘ ā†’ šµ āˆˆ š‘Š)
fsuppcurry2.f (šœ‘ ā†’ š¹ Fn (š“ Ɨ šµ))
fsuppcurry2.c (šœ‘ ā†’ š¶ āˆˆ šµ)
fsuppcurry2.1 (šœ‘ ā†’ š¹ finSupp š‘)
Assertion
Ref Expression
fsuppcurry2 (šœ‘ ā†’ šŗ finSupp š‘)
Distinct variable groups:   š‘„,š“   š‘„,š¶   š‘„,š¹
Allowed substitution hints:   šœ‘(š‘„)   šµ(š‘„)   š‘ˆ(š‘„)   šŗ(š‘„)   š‘‰(š‘„)   š‘Š(š‘„)   š‘(š‘„)

Proof of Theorem fsuppcurry2
Dummy variables š‘¦ š‘§ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry2.g . . . 4 šŗ = (š‘„ āˆˆ š“ ā†¦ (š‘„š¹š¶))
2 oveq1 7412 . . . . 5 (š‘„ = š‘¦ ā†’ (š‘„š¹š¶) = (š‘¦š¹š¶))
32cbvmptv 5260 . . . 4 (š‘„ āˆˆ š“ ā†¦ (š‘„š¹š¶)) = (š‘¦ āˆˆ š“ ā†¦ (š‘¦š¹š¶))
41, 3eqtri 2760 . . 3 šŗ = (š‘¦ āˆˆ š“ ā†¦ (š‘¦š¹š¶))
5 fsuppcurry2.a . . . 4 (šœ‘ ā†’ š“ āˆˆ š‘‰)
65mptexd 7222 . . 3 (šœ‘ ā†’ (š‘¦ āˆˆ š“ ā†¦ (š‘¦š¹š¶)) āˆˆ V)
74, 6eqeltrid 2837 . 2 (šœ‘ ā†’ šŗ āˆˆ V)
81funmpt2 6584 . . 3 Fun šŗ
98a1i 11 . 2 (šœ‘ ā†’ Fun šŗ)
10 fsuppcurry2.z . 2 (šœ‘ ā†’ š‘ āˆˆ š‘ˆ)
11 fo1st 7991 . . . . 5 1st :Vā€“ontoā†’V
12 fofun 6803 . . . . 5 (1st :Vā€“ontoā†’V ā†’ Fun 1st )
1311, 12ax-mp 5 . . . 4 Fun 1st
14 funres 6587 . . . 4 (Fun 1st ā†’ Fun (1st ā†¾ (V Ɨ V)))
1513, 14mp1i 13 . . 3 (šœ‘ ā†’ Fun (1st ā†¾ (V Ɨ V)))
16 fsuppcurry2.1 . . . 4 (šœ‘ ā†’ š¹ finSupp š‘)
1716fsuppimpd 9365 . . 3 (šœ‘ ā†’ (š¹ supp š‘) āˆˆ Fin)
18 imafi 9171 . . 3 ((Fun (1st ā†¾ (V Ɨ V)) āˆ§ (š¹ supp š‘) āˆˆ Fin) ā†’ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin)
1915, 17, 18syl2anc 584 . 2 (šœ‘ ā†’ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin)
20 ovexd 7440 . . . 4 ((šœ‘ āˆ§ š‘¦ āˆˆ š“) ā†’ (š‘¦š¹š¶) āˆˆ V)
2120, 4fmptd 7110 . . 3 (šœ‘ ā†’ šŗ:š“āŸ¶V)
22 eldif 3957 . . . 4 (š‘¦ āˆˆ (š“ āˆ– ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))) ā†” (š‘¦ āˆˆ š“ āˆ§ Ā¬ š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))))
23 simplr 767 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š‘¦ āˆˆ š“)
24 fsuppcurry2.c . . . . . . . . . . . 12 (šœ‘ ā†’ š¶ āˆˆ šµ)
2524ad2antrr 724 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š¶ āˆˆ šµ)
2623, 25opelxpd 5713 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āŸØš‘¦, š¶āŸ© āˆˆ (š“ Ɨ šµ))
27 df-ov 7408 . . . . . . . . . . 11 (š‘¦š¹š¶) = (š¹ā€˜āŸØš‘¦, š¶āŸ©)
28 ovexd 7440 . . . . . . . . . . . . 13 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š‘¦š¹š¶) āˆˆ V)
291, 2, 23, 28fvmptd3 7018 . . . . . . . . . . . 12 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (šŗā€˜š‘¦) = (š‘¦š¹š¶))
30 simpr 485 . . . . . . . . . . . . 13 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ Ā¬ (šŗā€˜š‘¦) = š‘)
3130neqned 2947 . . . . . . . . . . . 12 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (šŗā€˜š‘¦) ā‰  š‘)
3229, 31eqnetrrd 3009 . . . . . . . . . . 11 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š‘¦š¹š¶) ā‰  š‘)
3327, 32eqnetrrid 3016 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š¹ā€˜āŸØš‘¦, š¶āŸ©) ā‰  š‘)
34 fsuppcurry2.f . . . . . . . . . . . 12 (šœ‘ ā†’ š¹ Fn (š“ Ɨ šµ))
35 fsuppcurry2.b . . . . . . . . . . . . 13 (šœ‘ ā†’ šµ āˆˆ š‘Š)
365, 35xpexd 7734 . . . . . . . . . . . 12 (šœ‘ ā†’ (š“ Ɨ šµ) āˆˆ V)
37 elsuppfn 8152 . . . . . . . . . . . 12 ((š¹ Fn (š“ Ɨ šµ) āˆ§ (š“ Ɨ šµ) āˆˆ V āˆ§ š‘ āˆˆ š‘ˆ) ā†’ (āŸØš‘¦, š¶āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš‘¦, š¶āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš‘¦, š¶āŸ©) ā‰  š‘)))
3834, 36, 10, 37syl3anc 1371 . . . . . . . . . . 11 (šœ‘ ā†’ (āŸØš‘¦, š¶āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš‘¦, š¶āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš‘¦, š¶āŸ©) ā‰  š‘)))
3938ad2antrr 724 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (āŸØš‘¦, š¶āŸ© āˆˆ (š¹ supp š‘) ā†” (āŸØš‘¦, š¶āŸ© āˆˆ (š“ Ɨ šµ) āˆ§ (š¹ā€˜āŸØš‘¦, š¶āŸ©) ā‰  š‘)))
4026, 33, 39mpbir2and 711 . . . . . . . . 9 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āŸØš‘¦, š¶āŸ© āˆˆ (š¹ supp š‘))
41 simpr 485 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ š‘§ = āŸØš‘¦, š¶āŸ©)
4241fveq2d 6892 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ ((1st ā†¾ (V Ɨ V))ā€˜š‘§) = ((1st ā†¾ (V Ɨ V))ā€˜āŸØš‘¦, š¶āŸ©))
43 xpss 5691 . . . . . . . . . . . 12 (š“ Ɨ šµ) āŠ† (V Ɨ V)
4426adantr 481 . . . . . . . . . . . 12 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ āŸØš‘¦, š¶āŸ© āˆˆ (š“ Ɨ šµ))
4543, 44sselid 3979 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ āŸØš‘¦, š¶āŸ© āˆˆ (V Ɨ V))
4645fvresd 6908 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ ((1st ā†¾ (V Ɨ V))ā€˜āŸØš‘¦, š¶āŸ©) = (1st ā€˜āŸØš‘¦, š¶āŸ©))
4723adantr 481 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ š‘¦ āˆˆ š“)
4825adantr 481 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ š¶ āˆˆ šµ)
49 op1stg 7983 . . . . . . . . . . 11 ((š‘¦ āˆˆ š“ āˆ§ š¶ āˆˆ šµ) ā†’ (1st ā€˜āŸØš‘¦, š¶āŸ©) = š‘¦)
5047, 48, 49syl2anc 584 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ (1st ā€˜āŸØš‘¦, š¶āŸ©) = š‘¦)
5142, 46, 503eqtrd 2776 . . . . . . . . 9 ((((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) āˆ§ š‘§ = āŸØš‘¦, š¶āŸ©) ā†’ ((1st ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦)
5240, 51rspcedeq1vd 3617 . . . . . . . 8 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ āˆƒš‘§ āˆˆ (š¹ supp š‘)((1st ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦)
53 fofn 6804 . . . . . . . . . . . . 13 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
54 fnresin 31837 . . . . . . . . . . . . 13 (1st Fn V ā†’ (1st ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (1st ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V))
56 ssv 4005 . . . . . . . . . . . . . 14 (V Ɨ V) āŠ† V
57 sseqin2 4214 . . . . . . . . . . . . . 14 ((V Ɨ V) āŠ† V ā†” (V āˆ© (V Ɨ V)) = (V Ɨ V))
5856, 57mpbi 229 . . . . . . . . . . . . 13 (V āˆ© (V Ɨ V)) = (V Ɨ V)
5958fneq2i 6644 . . . . . . . . . . . 12 ((1st ā†¾ (V Ɨ V)) Fn (V āˆ© (V Ɨ V)) ā†” (1st ā†¾ (V Ɨ V)) Fn (V Ɨ V))
6055, 59mpbi 229 . . . . . . . . . . 11 (1st ā†¾ (V Ɨ V)) Fn (V Ɨ V)
6160a1i 11 . . . . . . . . . 10 (šœ‘ ā†’ (1st ā†¾ (V Ɨ V)) Fn (V Ɨ V))
62 suppssdm 8158 . . . . . . . . . . . 12 (š¹ supp š‘) āŠ† dom š¹
6334fndmd 6651 . . . . . . . . . . . 12 (šœ‘ ā†’ dom š¹ = (š“ Ɨ šµ))
6462, 63sseqtrid 4033 . . . . . . . . . . 11 (šœ‘ ā†’ (š¹ supp š‘) āŠ† (š“ Ɨ šµ))
6564, 43sstrdi 3993 . . . . . . . . . 10 (šœ‘ ā†’ (š¹ supp š‘) āŠ† (V Ɨ V))
6661, 65fvelimabd 6962 . . . . . . . . 9 (šœ‘ ā†’ (š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†” āˆƒš‘§ āˆˆ (š¹ supp š‘)((1st ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦))
6766ad2antrr 724 . . . . . . . 8 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ (š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†” āˆƒš‘§ āˆˆ (š¹ supp š‘)((1st ā†¾ (V Ɨ V))ā€˜š‘§) = š‘¦))
6852, 67mpbird 256 . . . . . . 7 (((šœ‘ āˆ§ š‘¦ āˆˆ š“) āˆ§ Ā¬ (šŗā€˜š‘¦) = š‘) ā†’ š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))
6968ex 413 . . . . . 6 ((šœ‘ āˆ§ š‘¦ āˆˆ š“) ā†’ (Ā¬ (šŗā€˜š‘¦) = š‘ ā†’ š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘))))
7069con1d 145 . . . . 5 ((šœ‘ āˆ§ š‘¦ āˆˆ š“) ā†’ (Ā¬ š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) ā†’ (šŗā€˜š‘¦) = š‘))
7170impr 455 . . . 4 ((šœ‘ āˆ§ (š‘¦ āˆˆ š“ āˆ§ Ā¬ š‘¦ āˆˆ ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ (šŗā€˜š‘¦) = š‘)
7222, 71sylan2b 594 . . 3 ((šœ‘ āˆ§ š‘¦ āˆˆ (š“ āˆ– ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ (šŗā€˜š‘¦) = š‘)
7321, 72suppss 8175 . 2 (šœ‘ ā†’ (šŗ supp š‘) āŠ† ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))
74 suppssfifsupp 9374 . 2 (((šŗ āˆˆ V āˆ§ Fun šŗ āˆ§ š‘ āˆˆ š‘ˆ) āˆ§ (((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)) āˆˆ Fin āˆ§ (šŗ supp š‘) āŠ† ((1st ā†¾ (V Ɨ V)) ā€œ (š¹ supp š‘)))) ā†’ šŗ finSupp š‘)
757, 9, 10, 19, 73, 74syl32anc 1378 1 (šœ‘ ā†’ šŗ finSupp š‘)
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106   ā‰  wne 2940  āˆƒwrex 3070  Vcvv 3474   āˆ– cdif 3944   āˆ© cin 3946   āŠ† wss 3947  āŸØcop 4633   class class class wbr 5147   ā†¦ cmpt 5230   Ɨ cxp 5673  dom cdm 5675   ā†¾ cres 5677   ā€œ cima 5678  Fun wfun 6534   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  (class class class)co 7405  1st c1st 7969   supp csupp 8142  Fincfn 8935   finSupp cfsupp 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-supp 8143  df-1o 8462  df-en 8936  df-fin 8939  df-fsupp 9358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator