Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry2 Structured version   Visualization version   GIF version

Theorem fsuppcurry2 32649
Description: Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry2.g 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
fsuppcurry2.z (𝜑𝑍𝑈)
fsuppcurry2.a (𝜑𝐴𝑉)
fsuppcurry2.b (𝜑𝐵𝑊)
fsuppcurry2.f (𝜑𝐹 Fn (𝐴 × 𝐵))
fsuppcurry2.c (𝜑𝐶𝐵)
fsuppcurry2.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppcurry2 (𝜑𝐺 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑈(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppcurry2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry2.g . . . 4 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
2 oveq1 7394 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐹𝐶) = (𝑦𝐹𝐶))
32cbvmptv 5211 . . . 4 (𝑥𝐴 ↦ (𝑥𝐹𝐶)) = (𝑦𝐴 ↦ (𝑦𝐹𝐶))
41, 3eqtri 2752 . . 3 𝐺 = (𝑦𝐴 ↦ (𝑦𝐹𝐶))
5 fsuppcurry2.a . . . 4 (𝜑𝐴𝑉)
65mptexd 7198 . . 3 (𝜑 → (𝑦𝐴 ↦ (𝑦𝐹𝐶)) ∈ V)
74, 6eqeltrid 2832 . 2 (𝜑𝐺 ∈ V)
81funmpt2 6555 . . 3 Fun 𝐺
98a1i 11 . 2 (𝜑 → Fun 𝐺)
10 fsuppcurry2.z . 2 (𝜑𝑍𝑈)
11 fo1st 7988 . . . . 5 1st :V–onto→V
12 fofun 6773 . . . . 5 (1st :V–onto→V → Fun 1st )
1311, 12ax-mp 5 . . . 4 Fun 1st
14 funres 6558 . . . 4 (Fun 1st → Fun (1st ↾ (V × V)))
1513, 14mp1i 13 . . 3 (𝜑 → Fun (1st ↾ (V × V)))
16 fsuppcurry2.1 . . . 4 (𝜑𝐹 finSupp 𝑍)
1716fsuppimpd 9320 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 imafi 9264 . . 3 ((Fun (1st ↾ (V × V)) ∧ (𝐹 supp 𝑍) ∈ Fin) → ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
1915, 17, 18syl2anc 584 . 2 (𝜑 → ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
20 ovexd 7422 . . . 4 ((𝜑𝑦𝐴) → (𝑦𝐹𝐶) ∈ V)
2120, 4fmptd 7086 . . 3 (𝜑𝐺:𝐴⟶V)
22 eldif 3924 . . . 4 (𝑦 ∈ (𝐴 ∖ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))))
23 simplr 768 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦𝐴)
24 fsuppcurry2.c . . . . . . . . . . . 12 (𝜑𝐶𝐵)
2524ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝐶𝐵)
2623, 25opelxpd 5677 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵))
27 df-ov 7390 . . . . . . . . . . 11 (𝑦𝐹𝐶) = (𝐹‘⟨𝑦, 𝐶⟩)
28 ovexd 7422 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦𝐹𝐶) ∈ V)
291, 2, 23, 28fvmptd3 6991 . . . . . . . . . . . 12 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = (𝑦𝐹𝐶))
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ¬ (𝐺𝑦) = 𝑍)
3130neqned 2932 . . . . . . . . . . . 12 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) ≠ 𝑍)
3229, 31eqnetrrd 2993 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦𝐹𝐶) ≠ 𝑍)
3327, 32eqnetrrid 3000 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)
34 fsuppcurry2.f . . . . . . . . . . . 12 (𝜑𝐹 Fn (𝐴 × 𝐵))
35 fsuppcurry2.b . . . . . . . . . . . . 13 (𝜑𝐵𝑊)
365, 35xpexd 7727 . . . . . . . . . . . 12 (𝜑 → (𝐴 × 𝐵) ∈ V)
37 elsuppfn 8149 . . . . . . . . . . . 12 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝑍𝑈) → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
3834, 36, 10, 37syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
3938ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
4026, 33, 39mpbir2and 713 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍))
41 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝑧 = ⟨𝑦, 𝐶⟩)
4241fveq2d 6862 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘𝑧) = ((1st ↾ (V × V))‘⟨𝑦, 𝐶⟩))
43 xpss 5654 . . . . . . . . . . . 12 (𝐴 × 𝐵) ⊆ (V × V)
4426adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵))
4543, 44sselid 3944 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ⟨𝑦, 𝐶⟩ ∈ (V × V))
4645fvresd 6878 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘⟨𝑦, 𝐶⟩) = (1st ‘⟨𝑦, 𝐶⟩))
4723adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝑦𝐴)
4825adantr 480 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝐶𝐵)
49 op1stg 7980 . . . . . . . . . . 11 ((𝑦𝐴𝐶𝐵) → (1st ‘⟨𝑦, 𝐶⟩) = 𝑦)
5047, 48, 49syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → (1st ‘⟨𝑦, 𝐶⟩) = 𝑦)
5142, 46, 503eqtrd 2768 . . . . . . . . 9 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘𝑧) = 𝑦)
5240, 51rspcedeq1vd 3595 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦)
53 fofn 6774 . . . . . . . . . . . . 13 (1st :V–onto→V → 1st Fn V)
54 fnresin 32550 . . . . . . . . . . . . 13 (1st Fn V → (1st ↾ (V × V)) Fn (V ∩ (V × V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (1st ↾ (V × V)) Fn (V ∩ (V × V))
56 ssv 3971 . . . . . . . . . . . . . 14 (V × V) ⊆ V
57 sseqin2 4186 . . . . . . . . . . . . . 14 ((V × V) ⊆ V ↔ (V ∩ (V × V)) = (V × V))
5856, 57mpbi 230 . . . . . . . . . . . . 13 (V ∩ (V × V)) = (V × V)
5958fneq2i 6616 . . . . . . . . . . . 12 ((1st ↾ (V × V)) Fn (V ∩ (V × V)) ↔ (1st ↾ (V × V)) Fn (V × V))
6055, 59mpbi 230 . . . . . . . . . . 11 (1st ↾ (V × V)) Fn (V × V)
6160a1i 11 . . . . . . . . . 10 (𝜑 → (1st ↾ (V × V)) Fn (V × V))
62 suppssdm 8156 . . . . . . . . . . . 12 (𝐹 supp 𝑍) ⊆ dom 𝐹
6334fndmd 6623 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (𝐴 × 𝐵))
6462, 63sseqtrid 3989 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐴 × 𝐵))
6564, 43sstrdi 3959 . . . . . . . . . 10 (𝜑 → (𝐹 supp 𝑍) ⊆ (V × V))
6661, 65fvelimabd 6934 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦))
6766ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦))
6852, 67mpbird 257 . . . . . . 7 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))
6968ex 412 . . . . . 6 ((𝜑𝑦𝐴) → (¬ (𝐺𝑦) = 𝑍𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))))
7069con1d 145 . . . . 5 ((𝜑𝑦𝐴) → (¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) → (𝐺𝑦) = 𝑍))
7170impr 454 . . . 4 ((𝜑 ∧ (𝑦𝐴 ∧ ¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7222, 71sylan2b 594 . . 3 ((𝜑𝑦 ∈ (𝐴 ∖ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7321, 72suppss 8173 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))
74 suppssfifsupp 9331 . 2 (((𝐺 ∈ V ∧ Fun 𝐺𝑍𝑈) ∧ (((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → 𝐺 finSupp 𝑍)
757, 9, 10, 19, 73, 74syl32anc 1380 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  cin 3913  wss 3914  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387  1st c1st 7966   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-supp 8140  df-1o 8434  df-en 8919  df-dom 8920  df-fin 8922  df-fsupp 9313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator