Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry2 Structured version   Visualization version   GIF version

Theorem fsuppcurry2 31070
Description: Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry2.g 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
fsuppcurry2.z (𝜑𝑍𝑈)
fsuppcurry2.a (𝜑𝐴𝑉)
fsuppcurry2.b (𝜑𝐵𝑊)
fsuppcurry2.f (𝜑𝐹 Fn (𝐴 × 𝐵))
fsuppcurry2.c (𝜑𝐶𝐵)
fsuppcurry2.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppcurry2 (𝜑𝐺 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑈(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppcurry2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry2.g . . . 4 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
2 oveq1 7291 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐹𝐶) = (𝑦𝐹𝐶))
32cbvmptv 5188 . . . 4 (𝑥𝐴 ↦ (𝑥𝐹𝐶)) = (𝑦𝐴 ↦ (𝑦𝐹𝐶))
41, 3eqtri 2767 . . 3 𝐺 = (𝑦𝐴 ↦ (𝑦𝐹𝐶))
5 fsuppcurry2.a . . . 4 (𝜑𝐴𝑉)
65mptexd 7109 . . 3 (𝜑 → (𝑦𝐴 ↦ (𝑦𝐹𝐶)) ∈ V)
74, 6eqeltrid 2844 . 2 (𝜑𝐺 ∈ V)
81funmpt2 6480 . . 3 Fun 𝐺
98a1i 11 . 2 (𝜑 → Fun 𝐺)
10 fsuppcurry2.z . 2 (𝜑𝑍𝑈)
11 fo1st 7860 . . . . 5 1st :V–onto→V
12 fofun 6698 . . . . 5 (1st :V–onto→V → Fun 1st )
1311, 12ax-mp 5 . . . 4 Fun 1st
14 funres 6483 . . . 4 (Fun 1st → Fun (1st ↾ (V × V)))
1513, 14mp1i 13 . . 3 (𝜑 → Fun (1st ↾ (V × V)))
16 fsuppcurry2.1 . . . 4 (𝜑𝐹 finSupp 𝑍)
1716fsuppimpd 9144 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 imafi 8967 . . 3 ((Fun (1st ↾ (V × V)) ∧ (𝐹 supp 𝑍) ∈ Fin) → ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
1915, 17, 18syl2anc 584 . 2 (𝜑 → ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
20 ovexd 7319 . . . 4 ((𝜑𝑦𝐴) → (𝑦𝐹𝐶) ∈ V)
2120, 4fmptd 6997 . . 3 (𝜑𝐺:𝐴⟶V)
22 eldif 3898 . . . 4 (𝑦 ∈ (𝐴 ∖ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))))
23 simplr 766 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦𝐴)
24 fsuppcurry2.c . . . . . . . . . . . 12 (𝜑𝐶𝐵)
2524ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝐶𝐵)
2623, 25opelxpd 5628 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵))
27 df-ov 7287 . . . . . . . . . . 11 (𝑦𝐹𝐶) = (𝐹‘⟨𝑦, 𝐶⟩)
28 ovexd 7319 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦𝐹𝐶) ∈ V)
291, 2, 23, 28fvmptd3 6907 . . . . . . . . . . . 12 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = (𝑦𝐹𝐶))
30 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ¬ (𝐺𝑦) = 𝑍)
3130neqned 2951 . . . . . . . . . . . 12 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) ≠ 𝑍)
3229, 31eqnetrrd 3013 . . . . . . . . . . 11 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦𝐹𝐶) ≠ 𝑍)
3327, 32eqnetrrid 3020 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)
34 fsuppcurry2.f . . . . . . . . . . . 12 (𝜑𝐹 Fn (𝐴 × 𝐵))
35 fsuppcurry2.b . . . . . . . . . . . . 13 (𝜑𝐵𝑊)
365, 35xpexd 7610 . . . . . . . . . . . 12 (𝜑 → (𝐴 × 𝐵) ∈ V)
37 elsuppfn 7996 . . . . . . . . . . . 12 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝑍𝑈) → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
3834, 36, 10, 37syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
3938ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝑦, 𝐶⟩) ≠ 𝑍)))
4026, 33, 39mpbir2and 710 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝑦, 𝐶⟩ ∈ (𝐹 supp 𝑍))
41 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝑧 = ⟨𝑦, 𝐶⟩)
4241fveq2d 6787 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘𝑧) = ((1st ↾ (V × V))‘⟨𝑦, 𝐶⟩))
43 xpss 5606 . . . . . . . . . . . 12 (𝐴 × 𝐵) ⊆ (V × V)
4426adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ⟨𝑦, 𝐶⟩ ∈ (𝐴 × 𝐵))
4543, 44sselid 3920 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ⟨𝑦, 𝐶⟩ ∈ (V × V))
4645fvresd 6803 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘⟨𝑦, 𝐶⟩) = (1st ‘⟨𝑦, 𝐶⟩))
4723adantr 481 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝑦𝐴)
4825adantr 481 . . . . . . . . . . 11 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → 𝐶𝐵)
49 op1stg 7852 . . . . . . . . . . 11 ((𝑦𝐴𝐶𝐵) → (1st ‘⟨𝑦, 𝐶⟩) = 𝑦)
5047, 48, 49syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → (1st ‘⟨𝑦, 𝐶⟩) = 𝑦)
5142, 46, 503eqtrd 2783 . . . . . . . . 9 ((((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝑦, 𝐶⟩) → ((1st ↾ (V × V))‘𝑧) = 𝑦)
5240, 51rspcedeq1vd 3567 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦)
53 fofn 6699 . . . . . . . . . . . . 13 (1st :V–onto→V → 1st Fn V)
54 fnresin 30970 . . . . . . . . . . . . 13 (1st Fn V → (1st ↾ (V × V)) Fn (V ∩ (V × V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (1st ↾ (V × V)) Fn (V ∩ (V × V))
56 ssv 3946 . . . . . . . . . . . . . 14 (V × V) ⊆ V
57 sseqin2 4150 . . . . . . . . . . . . . 14 ((V × V) ⊆ V ↔ (V ∩ (V × V)) = (V × V))
5856, 57mpbi 229 . . . . . . . . . . . . 13 (V ∩ (V × V)) = (V × V)
5958fneq2i 6540 . . . . . . . . . . . 12 ((1st ↾ (V × V)) Fn (V ∩ (V × V)) ↔ (1st ↾ (V × V)) Fn (V × V))
6055, 59mpbi 229 . . . . . . . . . . 11 (1st ↾ (V × V)) Fn (V × V)
6160a1i 11 . . . . . . . . . 10 (𝜑 → (1st ↾ (V × V)) Fn (V × V))
62 suppssdm 8002 . . . . . . . . . . . 12 (𝐹 supp 𝑍) ⊆ dom 𝐹
6334fndmd 6547 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (𝐴 × 𝐵))
6462, 63sseqtrid 3974 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐴 × 𝐵))
6564, 43sstrdi 3934 . . . . . . . . . 10 (𝜑 → (𝐹 supp 𝑍) ⊆ (V × V))
6661, 65fvelimabd 6851 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦))
6766ad2antrr 723 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((1st ↾ (V × V))‘𝑧) = 𝑦))
6852, 67mpbird 256 . . . . . . 7 (((𝜑𝑦𝐴) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))
6968ex 413 . . . . . 6 ((𝜑𝑦𝐴) → (¬ (𝐺𝑦) = 𝑍𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍))))
7069con1d 145 . . . . 5 ((𝜑𝑦𝐴) → (¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) → (𝐺𝑦) = 𝑍))
7170impr 455 . . . 4 ((𝜑 ∧ (𝑦𝐴 ∧ ¬ 𝑦 ∈ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7222, 71sylan2b 594 . . 3 ((𝜑𝑦 ∈ (𝐴 ∖ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7321, 72suppss 8019 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))
74 suppssfifsupp 9152 . 2 (((𝐺 ∈ V ∧ Fun 𝐺𝑍𝑈) ∧ (((1st ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ ((1st ↾ (V × V)) “ (𝐹 supp 𝑍)))) → 𝐺 finSupp 𝑍)
757, 9, 10, 19, 73, 74syl32anc 1377 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  wrex 3066  Vcvv 3433  cdif 3885  cin 3887  wss 3888  cop 4568   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  cres 5592  cima 5593  Fun wfun 6431   Fn wfn 6432  ontowfo 6435  cfv 6437  (class class class)co 7284  1st c1st 7838   supp csupp 7986  Fincfn 8742   finSupp cfsupp 9137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-supp 7987  df-1o 8306  df-en 8743  df-fin 8746  df-fsupp 9138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator