![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcedeq2vd | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3637 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspcedeq2vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedeqvd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
3 | 2 | eqcomd 2746 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐶) |
4 | 3 | eqeq2d 2751 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐶 = 𝐶)) |
5 | eqidd 2741 | . 2 ⊢ (𝜑 → 𝐶 = 𝐶) | |
6 | 1, 4, 5 | rspcedvd 3637 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: elpr2elpr 4893 fsetfocdm 8921 symgextfo 19466 smatvscl 22553 eucrctshift 30277 fimgmcyc 42491 ntrclsneine0lem 44028 mogoldbblem 47596 sbgoldbwt 47653 sbgoldbo 47663 |
Copyright terms: Public domain | W3C validator |