MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedeq2vd Structured version   Visualization version   GIF version

Theorem rspcedeq2vd 3609
Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3603 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
rspcedeqvd.1 (𝜑𝐴𝐵)
rspcedeqvd.2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
rspcedeq2vd (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem rspcedeq2vd
StepHypRef Expression
1 rspcedeqvd.1 . 2 (𝜑𝐴𝐵)
2 rspcedeqvd.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐷)
32eqcomd 2731 . . 3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐶)
43eqeq2d 2736 . 2 ((𝜑𝑥 = 𝐴) → (𝐶 = 𝐷𝐶 = 𝐶))
5 eqidd 2726 . 2 (𝜑𝐶 = 𝐶)
61, 4, 5rspcedvd 3603 1 (𝜑 → ∃𝑥𝐵 𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061
This theorem is referenced by:  symgextfo  19381  smatvscl  22444  eucrctshift  30097  ntrclsneine0lem  43559  mogoldbblem  47123  sbgoldbwt  47180  sbgoldbo  47190
  Copyright terms: Public domain W3C validator