| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcedeq2vd | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3593 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspcedeq2vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcedeqvd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
| 3 | 2 | eqcomd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐶) |
| 4 | 3 | eqeq2d 2741 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐶 = 𝐶)) |
| 5 | eqidd 2731 | . 2 ⊢ (𝜑 → 𝐶 = 𝐶) | |
| 6 | 1, 4, 5 | rspcedvd 3593 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: elpr2elpr 4835 fsetfocdm 8836 symgextfo 19358 smatvscl 22417 eucrctshift 30178 fimgmcyc 42515 ntrclsneine0lem 44046 mogoldbblem 47711 sbgoldbwt 47768 sbgoldbo 47778 |
| Copyright terms: Public domain | W3C validator |