| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcedeq2vd | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3607 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| rspcedeqvd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedeqvd.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspcedeq2vd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedeqvd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcedeqvd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) | |
| 3 | 2 | eqcomd 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐶) |
| 4 | 3 | eqeq2d 2745 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐶 = 𝐷 ↔ 𝐶 = 𝐶)) |
| 5 | eqidd 2735 | . 2 ⊢ (𝜑 → 𝐶 = 𝐶) | |
| 6 | 1, 4, 5 | rspcedvd 3607 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: elpr2elpr 4849 fsetfocdm 8883 symgextfo 19408 smatvscl 22478 eucrctshift 30190 fimgmcyc 42507 ntrclsneine0lem 44039 mogoldbblem 47665 sbgoldbwt 47722 sbgoldbo 47732 |
| Copyright terms: Public domain | W3C validator |