Step | Hyp | Ref
| Expression |
1 | | fincygsubgodexd.2 |
. . 3
β’ (π β πΊ β CycGrp) |
2 | | fincygsubgodexd.1 |
. . . . 5
β’ π΅ = (BaseβπΊ) |
3 | | eqid 2732 |
. . . . 5
β’
(.gβπΊ) = (.gβπΊ) |
4 | 2, 3 | iscyg 19741 |
. . . 4
β’ (πΊ β CycGrp β (πΊ β Grp β§ βπ¦ β π΅ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) |
5 | 4 | simprbi 497 |
. . 3
β’ (πΊ β CycGrp β
βπ¦ β π΅ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅) |
6 | 1, 5 | syl 17 |
. 2
β’ (π β βπ¦ β π΅ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅) |
7 | | eqid 2732 |
. . . 4
β’ (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦))) = (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦))) |
8 | | cyggrp 19752 |
. . . . . 6
β’ (πΊ β CycGrp β πΊ β Grp) |
9 | 1, 8 | syl 17 |
. . . . 5
β’ (π β πΊ β Grp) |
10 | 9 | adantr 481 |
. . . 4
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β πΊ β Grp) |
11 | | simprl 769 |
. . . 4
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β π¦ β π΅) |
12 | | fincygsubgodexd.3 |
. . . . . 6
β’ (π β πΆ β₯ (β―βπ΅)) |
13 | | fincygsubgodexd.4 |
. . . . . . . 8
β’ (π β π΅ β Fin) |
14 | 2, 9, 13 | hashfingrpnn 18853 |
. . . . . . 7
β’ (π β (β―βπ΅) β
β) |
15 | | fincygsubgodexd.5 |
. . . . . . 7
β’ (π β πΆ β β) |
16 | | nndivdvds 16202 |
. . . . . . 7
β’
(((β―βπ΅)
β β β§ πΆ
β β) β (πΆ
β₯ (β―βπ΅)
β ((β―βπ΅) /
πΆ) β
β)) |
17 | 14, 15, 16 | syl2anc 584 |
. . . . . 6
β’ (π β (πΆ β₯ (β―βπ΅) β ((β―βπ΅) / πΆ) β β)) |
18 | 12, 17 | mpbid 231 |
. . . . 5
β’ (π β ((β―βπ΅) / πΆ) β β) |
19 | 18 | adantr 481 |
. . . 4
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β ((β―βπ΅) / πΆ) β β) |
20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 19975 |
. . 3
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦))) β (SubGrpβπΊ)) |
21 | | simpr 485 |
. . . . 5
β’ (((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β§ π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) β π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) |
22 | 21 | fveq2d 6892 |
. . . 4
β’ (((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β§ π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) β (β―βπ₯) = (β―βran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦))))) |
23 | | eqid 2732 |
. . . . . 6
β’
((β―βπ΅) /
((β―βπ΅) / πΆ)) = ((β―βπ΅) / ((β―βπ΅) / πΆ)) |
24 | | eqid 2732 |
. . . . . 6
β’ (π β β€ β¦ (π(.gβπΊ)π¦)) = (π β β€ β¦ (π(.gβπΊ)π¦)) |
25 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅) |
26 | 15 | nnne0d 12258 |
. . . . . . . 8
β’ (π β πΆ β 0) |
27 | | divconjdvds 16254 |
. . . . . . . 8
β’ ((πΆ β₯ (β―βπ΅) β§ πΆ β 0) β ((β―βπ΅) / πΆ) β₯ (β―βπ΅)) |
28 | 12, 26, 27 | syl2anc 584 |
. . . . . . 7
β’ (π β ((β―βπ΅) / πΆ) β₯ (β―βπ΅)) |
29 | 28 | adantr 481 |
. . . . . 6
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β ((β―βπ΅) / πΆ) β₯ (β―βπ΅)) |
30 | 13 | adantr 481 |
. . . . . 6
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β π΅ β Fin) |
31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 19976 |
. . . . 5
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β (β―βran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) = ((β―βπ΅) / ((β―βπ΅) / πΆ))) |
32 | 31 | adantr 481 |
. . . 4
β’ (((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β§ π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) β (β―βran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) = ((β―βπ΅) / ((β―βπ΅) / πΆ))) |
33 | 14 | nncnd 12224 |
. . . . . 6
β’ (π β (β―βπ΅) β
β) |
34 | 15 | nncnd 12224 |
. . . . . 6
β’ (π β πΆ β β) |
35 | 14 | nnne0d 12258 |
. . . . . 6
β’ (π β (β―βπ΅) β 0) |
36 | 33, 34, 35, 26 | ddcand 12006 |
. . . . 5
β’ (π β ((β―βπ΅) / ((β―βπ΅) / πΆ)) = πΆ) |
37 | 36 | ad2antrr 724 |
. . . 4
β’ (((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β§ π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) β ((β―βπ΅) / ((β―βπ΅) / πΆ)) = πΆ) |
38 | 22, 32, 37 | 3eqtrd 2776 |
. . 3
β’ (((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β§ π₯ = ran (π β β€ β¦ (π(.gβπΊ)(((β―βπ΅) / πΆ)(.gβπΊ)π¦)))) β (β―βπ₯) = πΆ) |
39 | 20, 38 | rspcedeq1vd 3617 |
. 2
β’ ((π β§ (π¦ β π΅ β§ ran (π β β€ β¦ (π(.gβπΊ)π¦)) = π΅)) β βπ₯ β (SubGrpβπΊ)(β―βπ₯) = πΆ) |
40 | 6, 39 | rexlimddv 3161 |
1
β’ (π β βπ₯ β (SubGrpβπΊ)(β―βπ₯) = πΆ) |