![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincygsubgodexd | Structured version Visualization version GIF version |
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
fincygsubgodexd.1 | ⊢ 𝐵 = (Base‘𝐺) |
fincygsubgodexd.2 | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
fincygsubgodexd.3 | ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
fincygsubgodexd.4 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fincygsubgodexd.5 | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
Ref | Expression |
---|---|
fincygsubgodexd | ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fincygsubgodexd.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
2 | fincygsubgodexd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2736 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | iscyg 19656 | . . . 4 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐺 ∈ CycGrp → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
7 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) | |
8 | cyggrp 19667 | . . . . . 6 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp) |
11 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝑦 ∈ 𝐵) | |
12 | fincygsubgodexd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) | |
13 | fincygsubgodexd.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
14 | 2, 9, 13 | hashfingrpnn 18783 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
15 | fincygsubgodexd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
16 | nndivdvds 16145 | . . . . . . 7 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) | |
17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) |
18 | 12, 17 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 19890 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) ∈ (SubGrp‘𝐺)) |
21 | simpr 485 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) | |
22 | 21 | fveq2d 6846 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))))) |
23 | eqid 2736 | . . . . . 6 ⊢ ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) | |
24 | eqid 2736 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) | |
25 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) | |
26 | 15 | nnne0d 12203 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0) |
27 | divconjdvds 16197 | . . . . . . . 8 ⊢ ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) | |
28 | 12, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
29 | 28 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
30 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin) |
31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 19891 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
32 | 31 | adantr 481 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
33 | 14 | nncnd 12169 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
34 | 15 | nncnd 12169 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
35 | 14 | nnne0d 12203 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
36 | 33, 34, 35, 26 | ddcand 11951 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
37 | 36 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
38 | 22, 32, 37 | 3eqtrd 2780 | . . 3 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = 𝐶) |
39 | 20, 38 | rspcedeq1vd 3586 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
40 | 6, 39 | rexlimddv 3158 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 class class class wbr 5105 ↦ cmpt 5188 ran crn 5634 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 0cc0 11051 / cdiv 11812 ℕcn 12153 ℤcz 12499 ♯chash 14230 ∥ cdvds 16136 Basecbs 17083 Grpcgrp 18748 .gcmg 18872 SubGrpcsubg 18922 CycGrpccyg 19654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-dvds 16137 df-gcd 16375 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-od 19310 df-cyg 19655 |
This theorem is referenced by: ablsimpgprmd 19894 |
Copyright terms: Public domain | W3C validator |