![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincygsubgodexd | Structured version Visualization version GIF version |
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
fincygsubgodexd.1 | ⊢ 𝐵 = (Base‘𝐺) |
fincygsubgodexd.2 | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
fincygsubgodexd.3 | ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
fincygsubgodexd.4 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fincygsubgodexd.5 | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
Ref | Expression |
---|---|
fincygsubgodexd | ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fincygsubgodexd.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
2 | fincygsubgodexd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2726 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | iscyg 19873 | . . . 4 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) |
5 | 4 | simprbi 495 | . . 3 ⊢ (𝐺 ∈ CycGrp → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
7 | eqid 2726 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) | |
8 | cyggrp 19884 | . . . . . 6 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp) |
11 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝑦 ∈ 𝐵) | |
12 | fincygsubgodexd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) | |
13 | fincygsubgodexd.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
14 | 2, 9, 13 | hashfingrpnn 18962 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
15 | fincygsubgodexd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
16 | nndivdvds 16260 | . . . . . . 7 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) | |
17 | 14, 15, 16 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) |
18 | 12, 17 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
19 | 18 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 20107 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) ∈ (SubGrp‘𝐺)) |
21 | simpr 483 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) | |
22 | 21 | fveq2d 6897 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))))) |
23 | eqid 2726 | . . . . . 6 ⊢ ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) | |
24 | eqid 2726 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) | |
25 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) | |
26 | 15 | nnne0d 12308 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0) |
27 | divconjdvds 16312 | . . . . . . . 8 ⊢ ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) | |
28 | 12, 26, 27 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
29 | 28 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
30 | 13 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin) |
31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 20108 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
32 | 31 | adantr 479 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
33 | 14 | nncnd 12274 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
34 | 15 | nncnd 12274 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
35 | 14 | nnne0d 12308 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
36 | 33, 34, 35, 26 | ddcand 12055 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
37 | 36 | ad2antrr 724 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
38 | 22, 32, 37 | 3eqtrd 2770 | . . 3 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = 𝐶) |
39 | 20, 38 | rspcedeq1vd 3614 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
40 | 6, 39 | rexlimddv 3151 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 class class class wbr 5145 ↦ cmpt 5228 ran crn 5675 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 0cc0 11149 / cdiv 11912 ℕcn 12258 ℤcz 12604 ♯chash 14342 ∥ cdvds 16251 Basecbs 17208 Grpcgrp 18923 .gcmg 19057 SubGrpcsubg 19110 CycGrpccyg 19871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-acn 9978 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-fz 13533 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-dvds 16252 df-gcd 16490 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19058 df-subg 19113 df-od 19522 df-cyg 19872 |
This theorem is referenced by: ablsimpgprmd 20111 |
Copyright terms: Public domain | W3C validator |