MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodexd Structured version   Visualization version   GIF version

Theorem fincygsubgodexd 19716
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodexd.1 𝐵 = (Base‘𝐺)
fincygsubgodexd.2 (𝜑𝐺 ∈ CycGrp)
fincygsubgodexd.3 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodexd.4 (𝜑𝐵 ∈ Fin)
fincygsubgodexd.5 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodexd (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺

Proof of Theorem fincygsubgodexd
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fincygsubgodexd.2 . . 3 (𝜑𝐺 ∈ CycGrp)
2 fincygsubgodexd.1 . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2738 . . . . 5 (.g𝐺) = (.g𝐺)
42, 3iscyg 19479 . . . 4 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵))
54simprbi 497 . . 3 (𝐺 ∈ CycGrp → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
61, 5syl 17 . 2 (𝜑 → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
7 eqid 2738 . . . 4 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))
8 cyggrp 19490 . . . . . 6 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
91, 8syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
109adantr 481 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp)
11 simprl 768 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝑦𝐵)
12 fincygsubgodexd.3 . . . . . 6 (𝜑𝐶 ∥ (♯‘𝐵))
13 fincygsubgodexd.4 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
142, 9, 13hashfingrpnn 18612 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 fincygsubgodexd.5 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
16 nndivdvds 15972 . . . . . . 7 (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1714, 15, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1812, 17mpbid 231 . . . . 5 (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ)
1918adantr 481 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ)
202, 3, 7, 10, 11, 19fincygsubgd 19714 . . 3 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) ∈ (SubGrp‘𝐺))
21 simpr 485 . . . . 5 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))))
2221fveq2d 6778 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))))
23 eqid 2738 . . . . . 6 ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))
24 eqid 2738 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦))
25 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
2615nnne0d 12023 . . . . . . . 8 (𝜑𝐶 ≠ 0)
27 divconjdvds 16024 . . . . . . . 8 ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2812, 26, 27syl2anc 584 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2928adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
3013adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin)
312, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19fincygsubgodd 19715 . . . . 5 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3231adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3314nncnd 11989 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℂ)
3415nncnd 11989 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3514nnne0d 12023 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
3633, 34, 35, 26ddcand 11771 . . . . 5 (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3736ad2antrr 723 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3822, 32, 373eqtrd 2782 . . 3 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = 𝐶)
3920, 38rspcedeq1vd 3566 . 2 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
406, 39rexlimddv 3220 1 (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871   / cdiv 11632  cn 11973  cz 12319  chash 14044  cdvds 15963  Basecbs 16912  Grpcgrp 18577  .gcmg 18700  SubGrpcsubg 18749  CycGrpccyg 19477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-od 19136  df-cyg 19478
This theorem is referenced by:  ablsimpgprmd  19718
  Copyright terms: Public domain W3C validator