MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodexd Structured version   Visualization version   GIF version

Theorem fincygsubgodexd 20028
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodexd.1 𝐵 = (Base‘𝐺)
fincygsubgodexd.2 (𝜑𝐺 ∈ CycGrp)
fincygsubgodexd.3 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodexd.4 (𝜑𝐵 ∈ Fin)
fincygsubgodexd.5 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodexd (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺

Proof of Theorem fincygsubgodexd
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fincygsubgodexd.2 . . 3 (𝜑𝐺 ∈ CycGrp)
2 fincygsubgodexd.1 . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2731 . . . . 5 (.g𝐺) = (.g𝐺)
42, 3iscyg 19792 . . . 4 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵))
54simprbi 496 . . 3 (𝐺 ∈ CycGrp → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
61, 5syl 17 . 2 (𝜑 → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
7 eqid 2731 . . . 4 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))
8 cyggrp 19803 . . . . . 6 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
91, 8syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp)
11 simprl 770 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝑦𝐵)
12 fincygsubgodexd.3 . . . . . 6 (𝜑𝐶 ∥ (♯‘𝐵))
13 fincygsubgodexd.4 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
142, 9, 13hashfingrpnn 18885 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 fincygsubgodexd.5 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
16 nndivdvds 16172 . . . . . . 7 (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1714, 15, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1812, 17mpbid 232 . . . . 5 (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ)
1918adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ)
202, 3, 7, 10, 11, 19fincygsubgd 20026 . . 3 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) ∈ (SubGrp‘𝐺))
21 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))))
2221fveq2d 6826 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))))
23 eqid 2731 . . . . . 6 ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))
24 eqid 2731 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦))
25 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
2615nnne0d 12175 . . . . . . . 8 (𝜑𝐶 ≠ 0)
27 divconjdvds 16226 . . . . . . . 8 ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2812, 26, 27syl2anc 584 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin)
312, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19fincygsubgodd 20027 . . . . 5 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3231adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3314nncnd 12141 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℂ)
3415nncnd 12141 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3514nnne0d 12175 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
3633, 34, 35, 26ddcand 11917 . . . . 5 (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3736ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3822, 32, 373eqtrd 2770 . . 3 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = 𝐶)
3920, 38rspcedeq1vd 3584 . 2 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
406, 39rexlimddv 3139 1 (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cmpt 5172  ran crn 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  0cc0 11006   / cdiv 11774  cn 12125  cz 12468  chash 14237  cdvds 16163  Basecbs 17120  Grpcgrp 18846  .gcmg 18980  SubGrpcsubg 19033  CycGrpccyg 19790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-od 19441  df-cyg 19791
This theorem is referenced by:  ablsimpgprmd  20030
  Copyright terms: Public domain W3C validator