| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincygsubgodexd | Structured version Visualization version GIF version | ||
| Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| fincygsubgodexd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| fincygsubgodexd.2 | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| fincygsubgodexd.3 | ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
| fincygsubgodexd.4 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fincygsubgodexd.5 | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| Ref | Expression |
|---|---|
| fincygsubgodexd | ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fincygsubgodexd.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 2 | fincygsubgodexd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 4 | 2, 3 | iscyg 19809 | . . . 4 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐺 ∈ CycGrp → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
| 7 | eqid 2729 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) | |
| 8 | cyggrp 19820 | . . . . . 6 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp) |
| 11 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝑦 ∈ 𝐵) | |
| 12 | fincygsubgodexd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) | |
| 13 | fincygsubgodexd.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 14 | 2, 9, 13 | hashfingrpnn 18904 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| 15 | fincygsubgodexd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 16 | nndivdvds 16231 | . . . . . . 7 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) |
| 18 | 12, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
| 20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 20043 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) ∈ (SubGrp‘𝐺)) |
| 21 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) | |
| 22 | 21 | fveq2d 6862 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))))) |
| 23 | eqid 2729 | . . . . . 6 ⊢ ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) | |
| 25 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) | |
| 26 | 15 | nnne0d 12236 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 27 | divconjdvds 16285 | . . . . . . . 8 ⊢ ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) | |
| 28 | 12, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
| 30 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin) |
| 31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 20044 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
| 33 | 14 | nncnd 12202 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
| 34 | 15 | nncnd 12202 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 35 | 14 | nnne0d 12236 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
| 36 | 33, 34, 35, 26 | ddcand 11978 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
| 37 | 36 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
| 38 | 22, 32, 37 | 3eqtrd 2768 | . . 3 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = 𝐶) |
| 39 | 20, 38 | rspcedeq1vd 3595 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| 40 | 6, 39 | rexlimddv 3140 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 0cc0 11068 / cdiv 11835 ℕcn 12186 ℤcz 12529 ♯chash 14295 ∥ cdvds 16222 Basecbs 17179 Grpcgrp 18865 .gcmg 18999 SubGrpcsubg 19052 CycGrpccyg 19807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-od 19458 df-cyg 19808 |
| This theorem is referenced by: ablsimpgprmd 20047 |
| Copyright terms: Public domain | W3C validator |