MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodexd Structured version   Visualization version   GIF version

Theorem fincygsubgodexd 19631
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodexd.1 𝐵 = (Base‘𝐺)
fincygsubgodexd.2 (𝜑𝐺 ∈ CycGrp)
fincygsubgodexd.3 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodexd.4 (𝜑𝐵 ∈ Fin)
fincygsubgodexd.5 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodexd (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺

Proof of Theorem fincygsubgodexd
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fincygsubgodexd.2 . . 3 (𝜑𝐺 ∈ CycGrp)
2 fincygsubgodexd.1 . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2738 . . . . 5 (.g𝐺) = (.g𝐺)
42, 3iscyg 19394 . . . 4 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵))
54simprbi 496 . . 3 (𝐺 ∈ CycGrp → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
61, 5syl 17 . 2 (𝜑 → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
7 eqid 2738 . . . 4 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))
8 cyggrp 19405 . . . . . 6 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
91, 8syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp)
11 simprl 767 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝑦𝐵)
12 fincygsubgodexd.3 . . . . . 6 (𝜑𝐶 ∥ (♯‘𝐵))
13 fincygsubgodexd.4 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
142, 9, 13hashfingrpnn 18527 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 fincygsubgodexd.5 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
16 nndivdvds 15900 . . . . . . 7 (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1714, 15, 16syl2anc 583 . . . . . 6 (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1812, 17mpbid 231 . . . . 5 (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ)
1918adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ)
202, 3, 7, 10, 11, 19fincygsubgd 19629 . . 3 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) ∈ (SubGrp‘𝐺))
21 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))))
2221fveq2d 6760 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))))
23 eqid 2738 . . . . . 6 ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))
24 eqid 2738 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦))
25 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
2615nnne0d 11953 . . . . . . . 8 (𝜑𝐶 ≠ 0)
27 divconjdvds 15952 . . . . . . . 8 ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2812, 26, 27syl2anc 583 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin)
312, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19fincygsubgodd 19630 . . . . 5 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3231adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3314nncnd 11919 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℂ)
3415nncnd 11919 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3514nnne0d 11953 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
3633, 34, 35, 26ddcand 11701 . . . . 5 (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3736ad2antrr 722 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3822, 32, 373eqtrd 2782 . . 3 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = 𝐶)
3920, 38rspcedeq1vd 3558 . 2 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
406, 39rexlimddv 3219 1 (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802   / cdiv 11562  cn 11903  cz 12249  chash 13972  cdvds 15891  Basecbs 16840  Grpcgrp 18492  .gcmg 18615  SubGrpcsubg 18664  CycGrpccyg 19392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-od 19051  df-cyg 19393
This theorem is referenced by:  ablsimpgprmd  19633
  Copyright terms: Public domain W3C validator