| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincygsubgodexd | Structured version Visualization version GIF version | ||
| Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| fincygsubgodexd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| fincygsubgodexd.2 | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| fincygsubgodexd.3 | ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
| fincygsubgodexd.4 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| fincygsubgodexd.5 | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| Ref | Expression |
|---|---|
| fincygsubgodexd | ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fincygsubgodexd.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
| 2 | fincygsubgodexd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 4 | 2, 3 | iscyg 19865 | . . . 4 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐺 ∈ CycGrp → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
| 7 | eqid 2736 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) | |
| 8 | cyggrp 19876 | . . . . . 6 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
| 9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp) |
| 11 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝑦 ∈ 𝐵) | |
| 12 | fincygsubgodexd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) | |
| 13 | fincygsubgodexd.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 14 | 2, 9, 13 | hashfingrpnn 18960 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| 15 | fincygsubgodexd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 16 | nndivdvds 16286 | . . . . . . 7 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) |
| 18 | 12, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
| 20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 20099 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) ∈ (SubGrp‘𝐺)) |
| 21 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) | |
| 22 | 21 | fveq2d 6885 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))))) |
| 23 | eqid 2736 | . . . . . 6 ⊢ ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) | |
| 24 | eqid 2736 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) | |
| 25 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) | |
| 26 | 15 | nnne0d 12295 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 27 | divconjdvds 16339 | . . . . . . . 8 ⊢ ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) | |
| 28 | 12, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
| 30 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin) |
| 31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 20100 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
| 32 | 31 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
| 33 | 14 | nncnd 12261 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
| 34 | 15 | nncnd 12261 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 35 | 14 | nnne0d 12295 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
| 36 | 33, 34, 35, 26 | ddcand 12042 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
| 37 | 36 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
| 38 | 22, 32, 37 | 3eqtrd 2775 | . . 3 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = 𝐶) |
| 39 | 20, 38 | rspcedeq1vd 3613 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| 40 | 6, 39 | rexlimddv 3148 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 0cc0 11134 / cdiv 11899 ℕcn 12245 ℤcz 12593 ♯chash 14353 ∥ cdvds 16277 Basecbs 17233 Grpcgrp 18921 .gcmg 19055 SubGrpcsubg 19108 CycGrpccyg 19863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-od 19514 df-cyg 19864 |
| This theorem is referenced by: ablsimpgprmd 20103 |
| Copyright terms: Public domain | W3C validator |