![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincygsubgodexd | Structured version Visualization version GIF version |
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
fincygsubgodexd.1 | ⊢ 𝐵 = (Base‘𝐺) |
fincygsubgodexd.2 | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
fincygsubgodexd.3 | ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) |
fincygsubgodexd.4 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
fincygsubgodexd.5 | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
Ref | Expression |
---|---|
fincygsubgodexd | ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fincygsubgodexd.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
2 | fincygsubgodexd.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2734 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | iscyg 19911 | . . . 4 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐺 ∈ CycGrp → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) |
7 | eqid 2734 | . . . 4 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) | |
8 | cyggrp 19922 | . . . . . 6 ⊢ (𝐺 ∈ CycGrp → 𝐺 ∈ Grp) | |
9 | 1, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp) |
11 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝑦 ∈ 𝐵) | |
12 | fincygsubgodexd.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∥ (♯‘𝐵)) | |
13 | fincygsubgodexd.4 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
14 | 2, 9, 13 | hashfingrpnn 19002 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
15 | fincygsubgodexd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
16 | nndivdvds 16295 | . . . . . . 7 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) | |
17 | 14, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ)) |
18 | 12, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ) |
20 | 2, 3, 7, 10, 11, 19 | fincygsubgd 20145 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))) ∈ (SubGrp‘𝐺)) |
21 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) | |
22 | 21 | fveq2d 6910 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦))))) |
23 | eqid 2734 | . . . . . 6 ⊢ ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) | |
24 | eqid 2734 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) | |
25 | simprr 773 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵) | |
26 | 15 | nnne0d 12313 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ≠ 0) |
27 | divconjdvds 16348 | . . . . . . . 8 ⊢ ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) | |
28 | 12, 26, 27 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵)) |
30 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin) |
31 | 2, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19 | fincygsubgodd 20146 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
32 | 31 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))) |
33 | 14 | nncnd 12279 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℂ) |
34 | 15 | nncnd 12279 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
35 | 14 | nnne0d 12313 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ≠ 0) |
36 | 33, 34, 35, 26 | ddcand 12060 | . . . . 5 ⊢ (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
37 | 36 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶) |
38 | 22, 32, 37 | 3eqtrd 2778 | . . 3 ⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)(((♯‘𝐵) / 𝐶)(.g‘𝐺)𝑦)))) → (♯‘𝑥) = 𝐶) |
39 | 20, 38 | rspcedeq1vd 3628 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
40 | 6, 39 | rexlimddv 3158 | 1 ⊢ (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∃wrex 3067 class class class wbr 5147 ↦ cmpt 5230 ran crn 5689 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 0cc0 11152 / cdiv 11917 ℕcn 12263 ℤcz 12610 ♯chash 14365 ∥ cdvds 16286 Basecbs 17244 Grpcgrp 18963 .gcmg 19097 SubGrpcsubg 19150 CycGrpccyg 19909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-acn 9979 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-gcd 16528 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-od 19560 df-cyg 19910 |
This theorem is referenced by: ablsimpgprmd 20149 |
Copyright terms: Public domain | W3C validator |