MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodexd Structured version   Visualization version   GIF version

Theorem fincygsubgodexd 20133
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodexd.1 𝐵 = (Base‘𝐺)
fincygsubgodexd.2 (𝜑𝐺 ∈ CycGrp)
fincygsubgodexd.3 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodexd.4 (𝜑𝐵 ∈ Fin)
fincygsubgodexd.5 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodexd (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺

Proof of Theorem fincygsubgodexd
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fincygsubgodexd.2 . . 3 (𝜑𝐺 ∈ CycGrp)
2 fincygsubgodexd.1 . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2737 . . . . 5 (.g𝐺) = (.g𝐺)
42, 3iscyg 19897 . . . 4 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵))
54simprbi 496 . . 3 (𝐺 ∈ CycGrp → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
61, 5syl 17 . 2 (𝜑 → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
7 eqid 2737 . . . 4 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))
8 cyggrp 19908 . . . . . 6 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
91, 8syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp)
11 simprl 771 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝑦𝐵)
12 fincygsubgodexd.3 . . . . . 6 (𝜑𝐶 ∥ (♯‘𝐵))
13 fincygsubgodexd.4 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
142, 9, 13hashfingrpnn 18990 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 fincygsubgodexd.5 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
16 nndivdvds 16299 . . . . . . 7 (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1714, 15, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1812, 17mpbid 232 . . . . 5 (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ)
1918adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ)
202, 3, 7, 10, 11, 19fincygsubgd 20131 . . 3 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) ∈ (SubGrp‘𝐺))
21 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))))
2221fveq2d 6910 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))))
23 eqid 2737 . . . . . 6 ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))
24 eqid 2737 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦))
25 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
2615nnne0d 12316 . . . . . . . 8 (𝜑𝐶 ≠ 0)
27 divconjdvds 16352 . . . . . . . 8 ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2812, 26, 27syl2anc 584 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin)
312, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19fincygsubgodd 20132 . . . . 5 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3231adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3314nncnd 12282 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℂ)
3415nncnd 12282 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3514nnne0d 12316 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
3633, 34, 35, 26ddcand 12063 . . . . 5 (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3736ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3822, 32, 373eqtrd 2781 . . 3 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = 𝐶)
3920, 38rspcedeq1vd 3629 . 2 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
406, 39rexlimddv 3161 1 (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  Fincfn 8985  0cc0 11155   / cdiv 11920  cn 12266  cz 12613  chash 14369  cdvds 16290  Basecbs 17247  Grpcgrp 18951  .gcmg 19085  SubGrpcsubg 19138  CycGrpccyg 19895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-od 19546  df-cyg 19896
This theorem is referenced by:  ablsimpgprmd  20135
  Copyright terms: Public domain W3C validator