MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincygsubgodexd Structured version   Visualization version   GIF version

Theorem fincygsubgodexd 20045
Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
fincygsubgodexd.1 𝐵 = (Base‘𝐺)
fincygsubgodexd.2 (𝜑𝐺 ∈ CycGrp)
fincygsubgodexd.3 (𝜑𝐶 ∥ (♯‘𝐵))
fincygsubgodexd.4 (𝜑𝐵 ∈ Fin)
fincygsubgodexd.5 (𝜑𝐶 ∈ ℕ)
Assertion
Ref Expression
fincygsubgodexd (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺

Proof of Theorem fincygsubgodexd
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fincygsubgodexd.2 . . 3 (𝜑𝐺 ∈ CycGrp)
2 fincygsubgodexd.1 . . . . 5 𝐵 = (Base‘𝐺)
3 eqid 2729 . . . . 5 (.g𝐺) = (.g𝐺)
42, 3iscyg 19809 . . . 4 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵))
54simprbi 496 . . 3 (𝐺 ∈ CycGrp → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
61, 5syl 17 . 2 (𝜑 → ∃𝑦𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
7 eqid 2729 . . . 4 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))
8 cyggrp 19820 . . . . . 6 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
91, 8syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐺 ∈ Grp)
11 simprl 770 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝑦𝐵)
12 fincygsubgodexd.3 . . . . . 6 (𝜑𝐶 ∥ (♯‘𝐵))
13 fincygsubgodexd.4 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
142, 9, 13hashfingrpnn 18904 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
15 fincygsubgodexd.5 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
16 nndivdvds 16231 . . . . . . 7 (((♯‘𝐵) ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1714, 15, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐶) ∈ ℕ))
1812, 17mpbid 232 . . . . 5 (𝜑 → ((♯‘𝐵) / 𝐶) ∈ ℕ)
1918adantr 480 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∈ ℕ)
202, 3, 7, 10, 11, 19fincygsubgd 20043 . . 3 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))) ∈ (SubGrp‘𝐺))
21 simpr 484 . . . . 5 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦))))
2221fveq2d 6862 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))))
23 eqid 2729 . . . . . 6 ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶))
24 eqid 2729 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦))
25 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)
2615nnne0d 12236 . . . . . . . 8 (𝜑𝐶 ≠ 0)
27 divconjdvds 16285 . . . . . . . 8 ((𝐶 ∥ (♯‘𝐵) ∧ 𝐶 ≠ 0) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2812, 26, 27syl2anc 584 . . . . . . 7 (𝜑 → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ((♯‘𝐵) / 𝐶) ∥ (♯‘𝐵))
3013adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → 𝐵 ∈ Fin)
312, 3, 23, 24, 7, 10, 11, 25, 29, 30, 19fincygsubgodd 20044 . . . . 5 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3231adantr 480 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) = ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)))
3314nncnd 12202 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℂ)
3415nncnd 12202 . . . . . 6 (𝜑𝐶 ∈ ℂ)
3514nnne0d 12236 . . . . . 6 (𝜑 → (♯‘𝐵) ≠ 0)
3633, 34, 35, 26ddcand 11978 . . . . 5 (𝜑 → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3736ad2antrr 726 . . . 4 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐶)) = 𝐶)
3822, 32, 373eqtrd 2768 . . 3 (((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) ∧ 𝑥 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)(((♯‘𝐵) / 𝐶)(.g𝐺)𝑦)))) → (♯‘𝑥) = 𝐶)
3920, 38rspcedeq1vd 3595 . 2 ((𝜑 ∧ (𝑦𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
406, 39rexlimddv 3140 1 (𝜑 → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068   / cdiv 11835  cn 12186  cz 12529  chash 14295  cdvds 16222  Basecbs 17179  Grpcgrp 18865  .gcmg 18999  SubGrpcsubg 19052  CycGrpccyg 19807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-od 19458  df-cyg 19808
This theorem is referenced by:  ablsimpgprmd  20047
  Copyright terms: Public domain W3C validator