MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rzalALT Structured version   Visualization version   GIF version

Theorem rzalALT 4440
Description: Alternate proof of rzal 4439. Shorter, but requiring df-clel 2816, ax-8 2108. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rzalALT (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rzalALT
StepHypRef Expression
1 ne0i 4268 . . . 4 (𝑥𝐴𝐴 ≠ ∅)
21necon2bi 2974 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴)
32pm2.21d 121 . 2 (𝐴 = ∅ → (𝑥𝐴𝜑))
43ralrimiv 3102 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator