![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rzalALT | Structured version Visualization version GIF version |
Description: Alternate proof of rzal 4509. Shorter, but requiring df-clel 2811, ax-8 2109. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rzalALT | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4335 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1 | necon2bi 2972 | . . 3 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) |
3 | 2 | pm2.21d 121 | . 2 ⊢ (𝐴 = ∅ → (𝑥 ∈ 𝐴 → 𝜑)) |
4 | 3 | ralrimiv 3146 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-dif 3952 df-nul 4324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |