MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnfOLD Structured version   Visualization version   GIF version

Theorem sbnfOLD 2313
Description: Obsolete version of sbnf 2312 as of 2-May-2025. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbnfOLD ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbnfOLD
StepHypRef Expression
1 sbim 2303 . . . 4 ([𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑))
2 sbal 2169 . . . . 5 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
32imbi2i 336 . . . 4 (([𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
41, 3bitri 275 . . 3 ([𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
54albii 1819 . 2 (∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ∀𝑥([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
6 nf5 2282 . . . 4 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
76sbbii 2076 . . 3 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥(𝜑 → ∀𝑥𝜑))
8 sbal 2169 . . 3 ([𝑧 / 𝑦]∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑))
97, 8bitri 275 . 2 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑))
10 nf5 2282 . 2 (Ⅎ𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
115, 9, 103bitr4i 303 1 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator