MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbiiev Structured version   Visualization version   GIF version

Theorem sbbiiev 2092
Description: An equivalence of substitutions (as in sbbii 2076) allowing the additional information that 𝑥 = 𝑡. Version of sbiev 2318 and sbievw 2093 without a disjoint variable condition on 𝜓, useful for substituting only part of 𝜑. (Contributed by SN, 24-Aug-2025.)
Hypothesis
Ref Expression
sbbiiev.1 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
sbbiiev ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)
Distinct variable group:   𝑥,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝜓(𝑥,𝑡)

Proof of Theorem sbbiiev
StepHypRef Expression
1 sbbiiev.1 . . . 4 (𝑥 = 𝑡 → (𝜑𝜓))
21pm5.74i 271 . . 3 ((𝑥 = 𝑡𝜑) ↔ (𝑥 = 𝑡𝜓))
32albii 1817 . 2 (∀𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑥(𝑥 = 𝑡𝜓))
4 sb6 2085 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
5 sb6 2085 . 2 ([𝑡 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑡𝜓))
63, 4, 53bitr4i 303 1 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  sbievw  2093  sbcom3vv  2097  sbcov  2257  sbiev  2318  cbvralsvw  3323
  Copyright terms: Public domain W3C validator