![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbbiiev | Structured version Visualization version GIF version |
Description: An equivalence of substitutions (as in sbbii 2076) allowing the additional information that 𝑥 = 𝑡. Version of sbiev 2318 and sbievw 2093 without a disjoint variable condition on 𝜓, useful for substituting only part of 𝜑. (Contributed by SN, 24-Aug-2025.) |
Ref | Expression |
---|---|
sbbiiev.1 | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbbiiev | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbiiev.1 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑡 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜓)) |
3 | 2 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜓)) |
4 | sb6 2085 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
5 | sb6 2085 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜓)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbievw 2093 sbcom3vv 2097 sbcov 2257 sbiev 2318 cbvralsvw 3323 |
Copyright terms: Public domain | W3C validator |