| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbiiev | Structured version Visualization version GIF version | ||
| Description: An equivalence of substitutions (as in sbbii 2075) allowing the additional information that 𝑥 = 𝑡. Version of sbiev 2313 and sbievw 2092 without a disjoint variable condition on 𝜓, useful for substituting only part of 𝜑. (Contributed by SN, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| sbbiiev.1 | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbbiiev | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbiiev.1 | . . . 4 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝑡 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜓)) |
| 3 | 2 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜓)) |
| 4 | sb6 2084 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
| 5 | sb6 2084 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜓)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 |
| This theorem is referenced by: sbievw 2092 sbcom3vv 2096 sbcov 2255 sbiev 2313 cbvralsvw 3294 |
| Copyright terms: Public domain | W3C validator |