![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralsvw | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Version of cbvralsv 3362 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
cbvralsvw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfs1v 2153 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | sbequ12 2243 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvralw 3303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 df-clel 2810 df-nfc 2885 df-ral 3062 |
This theorem is referenced by: sbralieALT 3355 rspsbc 3873 ralxpf 5846 tfinds 7848 tfindes 7851 nn0min 32021 |
Copyright terms: Public domain | W3C validator |