Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvralsvw | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Version of cbvralsv 3381 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by NM, 20-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvralsvw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
2 | nfs1v 2157 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
3 | sbequ12 2250 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvralw 3352 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
5 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 | |
6 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
7 | sbequ 2088 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | 5, 6, 7 | cbvralw 3352 | . 2 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
9 | 4, 8 | bitri 278 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 [wsb 2069 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-10 2142 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-sb 2070 df-clel 2830 df-nfc 2901 df-ral 3075 |
This theorem is referenced by: sbralie 3383 rspsbc 3785 ralxpf 5686 tfinds 7573 tfindes 7576 nn0min 30658 |
Copyright terms: Public domain | W3C validator |