MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralsvw Structured version   Visualization version   GIF version

Theorem cbvralsvw 3391
Description: Change bound variable by using a substitution. Version of cbvralsv 3393 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 20-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
cbvralsvw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvralsvw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . 3 𝑧𝜑
2 nfs1v 2155 . . 3 𝑥[𝑧 / 𝑥]𝜑
3 sbequ12 2247 . . 3 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
41, 2, 3cbvralw 3363 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑧𝐴 [𝑧 / 𝑥]𝜑)
5 nfv 1918 . . 3 𝑦[𝑧 / 𝑥]𝜑
6 nfv 1918 . . 3 𝑧[𝑦 / 𝑥]𝜑
7 sbequ 2087 . . 3 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
85, 6, 7cbvralw 3363 . 2 (∀𝑧𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
94, 8bitri 274 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clel 2817  df-nfc 2888  df-ral 3068
This theorem is referenced by:  sbralie  3395  rspsbc  3808  ralxpf  5744  tfinds  7681  tfindes  7684  nn0min  31036
  Copyright terms: Public domain W3C validator