![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralsvw | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Version of cbvralsv 3364 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 8-Mar-2025.) Avoid ax-10 2139, ax-12 2175. (Revised by SN, 21-Aug-2025.) |
Ref | Expression |
---|---|
cbvralsvw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8v 2353 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝑥 ∈ 𝐴 → 𝜑)) | |
2 | df-ral 3060 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | df-ral 3060 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥]𝜑)) | |
4 | eleq1w 2822 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | imbi1d 341 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜑))) |
6 | 5 | sbbiiev 2090 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 → 𝜑) ↔ [𝑦 / 𝑥](𝑦 ∈ 𝐴 → 𝜑)) |
7 | sbrimvw 2089 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑦 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → [𝑦 / 𝑥]𝜑)) | |
8 | 6, 7 | bitr2i 276 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 → [𝑦 / 𝑥]𝜑) ↔ [𝑦 / 𝑥](𝑥 ∈ 𝐴 → 𝜑)) |
9 | 8 | albii 1816 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝑥 ∈ 𝐴 → 𝜑)) |
10 | 3, 9 | bitri 275 | . 2 ⊢ (∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥](𝑥 ∈ 𝐴 → 𝜑)) |
11 | 1, 2, 10 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 [wsb 2062 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-11 2155 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clel 2814 df-ral 3060 |
This theorem is referenced by: sbralieALT 3357 rspsbc 3888 ralxpf 5860 tfinds 7881 tfindes 7884 nn0min 32827 |
Copyright terms: Public domain | W3C validator |