MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralsvw Structured version   Visualization version   GIF version

Theorem cbvralsvw 3323
Description: Change bound variable by using a substitution. Version of cbvralsv 3374 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 8-Mar-2025.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 21-Aug-2025.)
Assertion
Ref Expression
cbvralsvw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvralsvw
StepHypRef Expression
1 sb8v 2358 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝑥𝐴𝜑))
2 df-ral 3068 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
3 df-ral 3068 . . 3 (∀𝑦𝐴 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦𝐴 → [𝑦 / 𝑥]𝜑))
4 eleq1w 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
54imbi1d 341 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜑)))
65sbbiiev 2092 . . . . 5 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ [𝑦 / 𝑥](𝑦𝐴𝜑))
7 sbrimvw 2091 . . . . 5 ([𝑦 / 𝑥](𝑦𝐴𝜑) ↔ (𝑦𝐴 → [𝑦 / 𝑥]𝜑))
86, 7bitr2i 276 . . . 4 ((𝑦𝐴 → [𝑦 / 𝑥]𝜑) ↔ [𝑦 / 𝑥](𝑥𝐴𝜑))
98albii 1817 . . 3 (∀𝑦(𝑦𝐴 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦[𝑦 / 𝑥](𝑥𝐴𝜑))
103, 9bitri 275 . 2 (∀𝑦𝐴 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥](𝑥𝐴𝜑))
111, 2, 103bitr4i 303 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clel 2819  df-ral 3068
This theorem is referenced by:  sbralieALT  3367  rspsbc  3901  ralxpf  5871  tfinds  7897  tfindes  7900  nn0min  32824
  Copyright terms: Public domain W3C validator