MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralsvw Structured version   Visualization version   GIF version

Theorem cbvralsvw 3308
Description: Change bound variable by using a substitution. Version of cbvralsv 3356 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2365. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 8-Mar-2025.)
Assertion
Ref Expression
cbvralsvw (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvralsvw
StepHypRef Expression
1 nfv 1909 . 2 𝑦𝜑
2 nfs1v 2145 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2235 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvralw 3297 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2059  wral 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-10 2129  ax-11 2146  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060  df-clel 2804  df-nfc 2879  df-ral 3056
This theorem is referenced by:  sbralieALT  3349  rspsbc  3868  ralxpf  5840  tfinds  7846  tfindes  7849  nn0min  32531
  Copyright terms: Public domain W3C validator