![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvralsvw | Structured version Visualization version GIF version |
Description: Change bound variable by using a substitution. Version of cbvralsv 3350 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2365. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 8-Mar-2025.) |
Ref | Expression |
---|---|
cbvralsvw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfs1v 2145 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | sbequ12 2238 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbvralw 3294 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2059 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 df-sb 2060 df-clel 2802 df-nfc 2877 df-ral 3052 |
This theorem is referenced by: sbralieALT 3343 rspsbc 3864 ralxpf 5843 tfinds 7862 tfindes 7865 nn0min 32628 |
Copyright terms: Public domain | W3C validator |