Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc2iedv | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
Ref | Expression |
---|---|
sbc2iedv.1 | ⊢ 𝐴 ∈ V |
sbc2iedv.2 | ⊢ 𝐵 ∈ V |
sbc2iedv.3 | ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
sbc2iedv | ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2iedv.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | sbc2iedv.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
5 | sbc2iedv.3 | . . . 4 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) | |
6 | 5 | impl 456 | . . 3 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
7 | 4, 6 | sbcied 3761 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
8 | 2, 7 | sbcied 3761 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: dfoprab3 7894 sbcie2s 16862 ismnddef 18387 isfrgr 28624 sdclem1 35901 |
Copyright terms: Public domain | W3C validator |