| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc2iedv | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbc2iedv.1 | ⊢ 𝐴 ∈ V |
| sbc2iedv.2 | ⊢ 𝐵 ∈ V |
| sbc2iedv.3 | ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| sbc2iedv | ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iedv.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | sbc2iedv.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
| 5 | sbc2iedv.3 | . . . 4 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) | |
| 6 | 5 | impl 455 | . . 3 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 7 | 4, 6 | sbcied 3780 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 8 | 2, 7 | sbcied 3780 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: dfoprab3 7986 sbcie2s 17072 ismnddef 18644 isfrgr 30240 sdclem1 37791 |
| Copyright terms: Public domain | W3C validator |