MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2iedv Structured version   Visualization version   GIF version

Theorem sbc2iedv 3889
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Hypotheses
Ref Expression
sbc2iedv.1 𝐴 ∈ V
sbc2iedv.2 𝐵 ∈ V
sbc2iedv.3 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
Assertion
Ref Expression
sbc2iedv (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem sbc2iedv
StepHypRef Expression
1 sbc2iedv.1 . . 3 𝐴 ∈ V
21a1i 11 . 2 (𝜑𝐴 ∈ V)
3 sbc2iedv.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵 ∈ V)
5 sbc2iedv.3 . . . 4 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
65impl 455 . . 3 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓𝜒))
74, 6sbcied 3850 . 2 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓𝜒))
82, 7sbcied 3850 1 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  dfoprab3  8095  sbcie2s  17208  ismnddef  18774  isfrgr  30292  sdclem1  37703
  Copyright terms: Public domain W3C validator