MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2ie Structured version   Visualization version   GIF version

Theorem sbc2ie 3809
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Gino Giotto, 12-Oct-2024.)
Hypotheses
Ref Expression
sbc2ie.1 𝐴 ∈ V
sbc2ie.2 𝐵 ∈ V
sbc2ie.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbc2ie ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2 𝐴 ∈ V
2 sbc2ie.2 . . . 4 𝐵 ∈ V
32a1i 11 . . 3 (𝑥 = 𝐴𝐵 ∈ V)
4 sbc2ie.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
53, 4sbcied 3771 . 2 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑𝜓))
61, 5sbcie 3769 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  [wsbc 3726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-sbc 3727
This theorem is referenced by:  sbc3ie  3812  brfi1uzind  14284  opfi1uzind  14287  wrd2ind  14508  isprs  18085  isdrs  18089  istos  18206  issrg  19811  isslmd  31563  rexrabdioph  40819  rmydioph  41040  rmxdioph  41042  expdiophlem2  41048  2reu8i  44857
  Copyright terms: Public domain W3C validator