| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc2ie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbc2ie.1 | ⊢ 𝐴 ∈ V |
| sbc2ie.2 | ⊢ 𝐵 ∈ V |
| sbc2ie.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbc2ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2ie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbc2ie.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 ∈ V) |
| 4 | sbc2ie.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbcied 3814 | . 2 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 6 | 1, 5 | sbcie 3812 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbc3ie 3848 brfi1uzind 14531 opfi1uzind 14534 wrd2ind 14746 isprs 18313 isdrs 18318 istos 18433 issrg 20153 isslmd 33204 rexrabdioph 42784 rmydioph 43005 rmxdioph 43007 expdiophlem2 43013 2reu8i 47109 |
| Copyright terms: Public domain | W3C validator |