![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc2ie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by GG, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbc2ie.1 | ⊢ 𝐴 ∈ V |
sbc2ie.2 | ⊢ 𝐵 ∈ V |
sbc2ie.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc2ie.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 ∈ V) |
4 | sbc2ie.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbcied 3837 | . 2 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
6 | 1, 5 | sbcie 3835 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: sbc3ie 3877 brfi1uzind 14544 opfi1uzind 14547 wrd2ind 14758 isprs 18354 isdrs 18359 istos 18476 issrg 20206 isslmd 33191 rexrabdioph 42782 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 2reu8i 47063 |
Copyright terms: Public domain | W3C validator |