![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc2ie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by GG, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbc2ie.1 | ⊢ 𝐴 ∈ V |
sbc2ie.2 | ⊢ 𝐵 ∈ V |
sbc2ie.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc2ie.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 ∈ V) |
4 | sbc2ie.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbcied 3822 | . 2 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
6 | 1, 5 | sbcie 3820 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-sbc 3777 |
This theorem is referenced by: sbc3ie 3862 brfi1uzind 14517 opfi1uzind 14520 wrd2ind 14731 isprs 18322 isdrs 18326 istos 18443 issrg 20171 isslmd 33066 rexrabdioph 42451 rmydioph 42672 rmxdioph 42674 expdiophlem2 42680 2reu8i 46726 |
Copyright terms: Public domain | W3C validator |