![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc2iegf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
sbc2iegf.1 | ⊢ Ⅎ𝑥𝜓 |
sbc2iegf.2 | ⊢ Ⅎ𝑦𝜓 |
sbc2iegf.3 | ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 |
sbc2iegf.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2iegf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
2 | simpl 476 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) | |
3 | sbc2iegf.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 3 | adantll 704 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
5 | nfv 1957 | . . . 4 ⊢ Ⅎ𝑦(𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) | |
6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜓) |
8 | 2, 4, 5, 7 | sbciedf 3688 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
9 | 8 | adantll 704 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
10 | nfv 1957 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑉 | |
11 | sbc2iegf.3 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | |
12 | 10, 11 | nfan 1946 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) |
13 | sbc2iegf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
14 | 13 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Ⅎ𝑥𝜓) |
15 | 1, 9, 12, 14 | sbciedf 3688 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 Ⅎwnf 1827 ∈ wcel 2107 [wsbc 3652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-v 3400 df-sbc 3653 |
This theorem is referenced by: sbc2ie 3723 opelopabaf 5236 elmptrab 22039 vtocl2d 29886 brabg2a 38123 |
Copyright terms: Public domain | W3C validator |