|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbc2iegf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| sbc2iegf.1 | ⊢ Ⅎ𝑥𝜓 | 
| sbc2iegf.2 | ⊢ Ⅎ𝑦𝜓 | 
| sbc2iegf.3 | ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | 
| sbc2iegf.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| sbc2iegf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) | |
| 3 | sbc2iegf.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantll 714 | . . . 4 ⊢ (((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | 
| 5 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦(𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) | |
| 6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜓) | 
| 8 | 2, 4, 5, 7 | sbciedf 3831 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) | 
| 9 | 8 | adantll 714 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜑 ↔ 𝜓)) | 
| 10 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑉 | |
| 11 | sbc2iegf.3 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 | |
| 12 | 10, 11 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) | 
| 13 | sbc2iegf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Ⅎ𝑥𝜓) | 
| 15 | 1, 9, 12, 14 | sbciedf 3831 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3789 | 
| This theorem is referenced by: opelopabaf 5549 elmptrab 23835 | 
| Copyright terms: Public domain | W3C validator |