MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco2 Structured version   Visualization version   GIF version

Theorem sbcco2 3743
Description: A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcco2.1 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
sbcco2 ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem sbcco2
StepHypRef Expression
1 sbsbc 3720 . 2 ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝑥 / 𝑦][𝐵 / 𝑥]𝜑)
2 sbcco2.1 . . . . 5 (𝑥 = 𝑦𝐴 = 𝐵)
32equcoms 2023 . . . 4 (𝑦 = 𝑥𝐴 = 𝐵)
4 dfsbcq 3718 . . . . 5 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
54bicomd 222 . . . 4 (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
63, 5syl 17 . . 3 (𝑦 = 𝑥 → ([𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
76sbievw 2095 . 2 ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
81, 7bitr3i 276 1 ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsb 2067  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  tfinds2  7710
  Copyright terms: Public domain W3C validator