|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcco2 | Structured version Visualization version GIF version | ||
| Description: A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sbcco2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| sbcco2 | ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbsbc 3792 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝐵 / 𝑥]𝜑) | |
| 2 | sbcco2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 3 | 2 | equcoms 2019 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝐴 = 𝐵) | 
| 4 | dfsbcq 3790 | . . . . 5 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | |
| 5 | 4 | bicomd 223 | . . . 4 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 7 | 6 | sbievw 2093 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | 
| 8 | 1, 7 | bitr3i 277 | 1 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2064 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3789 | 
| This theorem is referenced by: tfinds2 7885 | 
| Copyright terms: Public domain | W3C validator |