MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds2 Structured version   Visualization version   GIF version

Theorem tfinds2 7797
Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of [Suppes] p. 197. The wff 𝜏 is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
tfinds2.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds2.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds2.4 (𝜏𝜓)
tfinds2.5 (𝑦 ∈ On → (𝜏 → (𝜒𝜃)))
tfinds2.6 (Lim 𝑥 → (𝜏 → (∀𝑦𝑥 𝜒𝜑)))
Assertion
Ref Expression
tfinds2 (𝑥 ∈ On → (𝜏𝜑))
Distinct variable groups:   𝑥,𝑦,𝜏   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem tfinds2
StepHypRef Expression
1 tfinds2.4 . . 3 (𝜏𝜓)
2 0ex 5246 . . . 4 ∅ ∈ V
3 tfinds2.1 . . . . 5 (𝑥 = ∅ → (𝜑𝜓))
43imbi2d 340 . . . 4 (𝑥 = ∅ → ((𝜏𝜑) ↔ (𝜏𝜓)))
52, 4sbcie 3784 . . 3 ([∅ / 𝑥](𝜏𝜑) ↔ (𝜏𝜓))
61, 5mpbir 231 . 2 [∅ / 𝑥](𝜏𝜑)
7 tfinds2.5 . . . . . . . 8 (𝑦 ∈ On → (𝜏 → (𝜒𝜃)))
87a2d 29 . . . . . . 7 (𝑦 ∈ On → ((𝜏𝜒) → (𝜏𝜃)))
98sbcth 3757 . . . . . 6 (𝑥 ∈ V → [𝑥 / 𝑦](𝑦 ∈ On → ((𝜏𝜒) → (𝜏𝜃))))
109elv 3441 . . . . 5 [𝑥 / 𝑦](𝑦 ∈ On → ((𝜏𝜒) → (𝜏𝜃)))
11 sbcimg 3791 . . . . . 6 (𝑥 ∈ V → ([𝑥 / 𝑦](𝑦 ∈ On → ((𝜏𝜒) → (𝜏𝜃))) ↔ ([𝑥 / 𝑦]𝑦 ∈ On → [𝑥 / 𝑦]((𝜏𝜒) → (𝜏𝜃)))))
1211elv 3441 . . . . 5 ([𝑥 / 𝑦](𝑦 ∈ On → ((𝜏𝜒) → (𝜏𝜃))) ↔ ([𝑥 / 𝑦]𝑦 ∈ On → [𝑥 / 𝑦]((𝜏𝜒) → (𝜏𝜃))))
1310, 12mpbi 230 . . . 4 ([𝑥 / 𝑦]𝑦 ∈ On → [𝑥 / 𝑦]((𝜏𝜒) → (𝜏𝜃)))
14 sbcel1v 3808 . . . 4 ([𝑥 / 𝑦]𝑦 ∈ On ↔ 𝑥 ∈ On)
15 sbcimg 3791 . . . . 5 (𝑥 ∈ V → ([𝑥 / 𝑦]((𝜏𝜒) → (𝜏𝜃)) ↔ ([𝑥 / 𝑦](𝜏𝜒) → [𝑥 / 𝑦](𝜏𝜃))))
1615elv 3441 . . . 4 ([𝑥 / 𝑦]((𝜏𝜒) → (𝜏𝜃)) ↔ ([𝑥 / 𝑦](𝜏𝜒) → [𝑥 / 𝑦](𝜏𝜃)))
1713, 14, 163imtr3i 291 . . 3 (𝑥 ∈ On → ([𝑥 / 𝑦](𝜏𝜒) → [𝑥 / 𝑦](𝜏𝜃)))
18 vex 3440 . . . 4 𝑥 ∈ V
19 tfinds2.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
2019bicomd 223 . . . . . 6 (𝑥 = 𝑦 → (𝜒𝜑))
2120equcoms 2020 . . . . 5 (𝑦 = 𝑥 → (𝜒𝜑))
2221imbi2d 340 . . . 4 (𝑦 = 𝑥 → ((𝜏𝜒) ↔ (𝜏𝜑)))
2318, 22sbcie 3784 . . 3 ([𝑥 / 𝑦](𝜏𝜒) ↔ (𝜏𝜑))
24 vex 3440 . . . . . . 7 𝑦 ∈ V
2524sucex 7742 . . . . . 6 suc 𝑦 ∈ V
26 tfinds2.3 . . . . . . 7 (𝑥 = suc 𝑦 → (𝜑𝜃))
2726imbi2d 340 . . . . . 6 (𝑥 = suc 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜃)))
2825, 27sbcie 3784 . . . . 5 ([suc 𝑦 / 𝑥](𝜏𝜑) ↔ (𝜏𝜃))
2928sbcbii 3799 . . . 4 ([𝑥 / 𝑦][suc 𝑦 / 𝑥](𝜏𝜑) ↔ [𝑥 / 𝑦](𝜏𝜃))
30 suceq 6375 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
3130sbcco2 3769 . . . 4 ([𝑥 / 𝑦][suc 𝑦 / 𝑥](𝜏𝜑) ↔ [suc 𝑥 / 𝑥](𝜏𝜑))
3229, 31bitr3i 277 . . 3 ([𝑥 / 𝑦](𝜏𝜃) ↔ [suc 𝑥 / 𝑥](𝜏𝜑))
3317, 23, 323imtr3g 295 . 2 (𝑥 ∈ On → ((𝜏𝜑) → [suc 𝑥 / 𝑥](𝜏𝜑)))
3419imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜒)))
3534sbralie 3315 . . . 4 (∀𝑥𝑦 (𝜏𝜑) ↔ [𝑦 / 𝑥]∀𝑦𝑥 (𝜏𝜒))
36 sbsbc 3746 . . . 4 ([𝑦 / 𝑥]∀𝑦𝑥 (𝜏𝜒) ↔ [𝑦 / 𝑥]𝑦𝑥 (𝜏𝜒))
3735, 36bitr2i 276 . . 3 ([𝑦 / 𝑥]𝑦𝑥 (𝜏𝜒) ↔ ∀𝑥𝑦 (𝜏𝜑))
38 r19.21v 3154 . . . . . . . 8 (∀𝑦𝑥 (𝜏𝜒) ↔ (𝜏 → ∀𝑦𝑥 𝜒))
39 tfinds2.6 . . . . . . . . 9 (Lim 𝑥 → (𝜏 → (∀𝑦𝑥 𝜒𝜑)))
4039a2d 29 . . . . . . . 8 (Lim 𝑥 → ((𝜏 → ∀𝑦𝑥 𝜒) → (𝜏𝜑)))
4138, 40biimtrid 242 . . . . . . 7 (Lim 𝑥 → (∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)))
4241sbcth 3757 . . . . . 6 (𝑦 ∈ V → [𝑦 / 𝑥](Lim 𝑥 → (∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑))))
4342elv 3441 . . . . 5 [𝑦 / 𝑥](Lim 𝑥 → (∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)))
44 sbcimg 3791 . . . . . 6 (𝑦 ∈ V → ([𝑦 / 𝑥](Lim 𝑥 → (∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑))) ↔ ([𝑦 / 𝑥]Lim 𝑥[𝑦 / 𝑥](∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)))))
4544elv 3441 . . . . 5 ([𝑦 / 𝑥](Lim 𝑥 → (∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑))) ↔ ([𝑦 / 𝑥]Lim 𝑥[𝑦 / 𝑥](∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑))))
4643, 45mpbi 230 . . . 4 ([𝑦 / 𝑥]Lim 𝑥[𝑦 / 𝑥](∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)))
47 limeq 6319 . . . . 5 (𝑥 = 𝑦 → (Lim 𝑥 ↔ Lim 𝑦))
4824, 47sbcie 3784 . . . 4 ([𝑦 / 𝑥]Lim 𝑥 ↔ Lim 𝑦)
49 sbcimg 3791 . . . . 5 (𝑦 ∈ V → ([𝑦 / 𝑥](∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)) ↔ ([𝑦 / 𝑥]𝑦𝑥 (𝜏𝜒) → [𝑦 / 𝑥](𝜏𝜑))))
5049elv 3441 . . . 4 ([𝑦 / 𝑥](∀𝑦𝑥 (𝜏𝜒) → (𝜏𝜑)) ↔ ([𝑦 / 𝑥]𝑦𝑥 (𝜏𝜒) → [𝑦 / 𝑥](𝜏𝜑)))
5146, 48, 503imtr3i 291 . . 3 (Lim 𝑦 → ([𝑦 / 𝑥]𝑦𝑥 (𝜏𝜒) → [𝑦 / 𝑥](𝜏𝜑)))
5237, 51biimtrrid 243 . 2 (Lim 𝑦 → (∀𝑥𝑦 (𝜏𝜑) → [𝑦 / 𝑥](𝜏𝜑)))
536, 33, 52tfindes 7796 1 (𝑥 ∈ On → (𝜏𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2065  wcel 2109  wral 3044  Vcvv 3436  [wsbc 3742  c0 4284  Oncon0 6307  Lim wlim 6308  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313
This theorem is referenced by:  inar1  10669  grur1a  10713
  Copyright terms: Public domain W3C validator