![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcco | Structured version Visualization version GIF version |
Description: A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker sbccow 3800 when possible. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcco | ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3787 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3787 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
3 | dfsbcq 3779 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝜑)) | |
4 | dfsbcq 3779 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | sbsbc 3781 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
6 | 5 | sbbii 2078 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
7 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
8 | 7 | sbco2 2509 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
9 | sbsbc 3781 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
10 | 6, 8, 9 | 3bitr3ri 302 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
11 | sbsbc 3781 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
13 | 3, 4, 12 | vtoclbg 3544 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
14 | 1, 2, 13 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2066 ∈ wcel 2105 Vcvv 3473 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-sbc 3778 |
This theorem is referenced by: csbco 3909 |
Copyright terms: Public domain | W3C validator |