Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbciedOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbcied 3756 as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbciedOLD.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbciedOLD.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbciedOLD | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbciedOLD.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sbciedOLD.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
4 | nfvd 1919 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | 1, 2, 3, 4 | sbciedf 3755 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |