MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciedOLD Structured version   Visualization version   GIF version

Theorem sbciedOLD 3851
Description: Obsolete version of sbcied 3850 as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbciedOLD.1 (𝜑𝐴𝑉)
sbciedOLD.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
sbciedOLD (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciedOLD
StepHypRef Expression
1 sbciedOLD.1 . 2 (𝜑𝐴𝑉)
2 sbciedOLD.2 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
3 nfv 1913 . 2 𝑥𝜑
4 nfvd 1914 . 2 (𝜑 → Ⅎ𝑥𝜒)
51, 2, 3, 4sbciedf 3849 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator