Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcied2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
Ref | Expression |
---|---|
sbcied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbcied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied2 | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | sbcied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | sylan9eqr 2800 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
5 | sbcied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
7 | 1, 6 | sbcied 3761 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: iscat 17381 sectffval 17462 issubc 17550 isfunc 17579 cat1 17812 ismgm 18327 issgrp 18376 isnsg 18783 isring 19787 islbs 20338 isdomn 20565 isassa 21063 opsrval 21247 isuhgr 27430 isushgr 27431 isupgr 27454 isumgr 27465 isuspgr 27522 isusgr 27523 isrng 45434 isthinc 46302 |
Copyright terms: Public domain | W3C validator |