![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcied2 | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
Ref | Expression |
---|---|
sbcied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sbcied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcied2 | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | sbcied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | sylan9eqr 2853 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
5 | sbcied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
6 | 4, 5 | syldan 586 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
7 | 1, 6 | sbcied 3668 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 [wsbc 3631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-v 3385 df-sbc 3632 |
This theorem is referenced by: iscat 16644 sectffval 16721 issubc 16806 isfunc 16835 ismgm 17555 issgrp 17597 isnsg 17933 isring 18864 islbs 19394 isdomn 19614 isassa 19635 opsrval 19794 isuhgr 26287 isushgr 26288 isupgr 26311 isumgr 26322 isuspgr 26380 isusgr 26381 isfrgr 27599 isrng 42663 |
Copyright terms: Public domain | W3C validator |