| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcied2 | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbcied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcied2 | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | sbcied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylan9eqr 2788 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 5 | sbcied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| 7 | 1, 6 | sbcied 3785 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: iscat 17578 sectffval 17657 issubc 17742 isfunc 17771 cat1 18004 ismgm 18549 issgrp 18628 isnsg 19068 isrng 20073 isring 20156 isdomn 20621 islbs 21011 isassa 21794 opsrval 21982 isuhgr 29039 isushgr 29040 isupgr 29063 isumgr 29074 isuspgr 29131 isusgr 29132 isgrim 47919 isthinc 49457 |
| Copyright terms: Public domain | W3C validator |