MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied2 Structured version   Visualization version   GIF version

Theorem sbcied2 3833
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1 (𝜑𝐴𝑉)
sbcied2.2 (𝜑𝐴 = 𝐵)
sbcied2.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
sbcied2 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2 (𝜑𝐴𝑉)
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 sbcied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2799 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 sbcied2.3 . . 3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
64, 5syldan 591 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
71, 6sbcied 3832 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  [wsbc 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-sbc 3789
This theorem is referenced by:  iscat  17715  sectffval  17794  issubc  17880  isfunc  17909  cat1  18142  ismgm  18654  issgrp  18733  isnsg  19173  isrng  20151  isring  20234  isdomn  20705  islbs  21075  isassa  21876  opsrval  22064  isuhgr  29077  isushgr  29078  isupgr  29101  isumgr  29112  isuspgr  29169  isusgr  29170  isgrim  47868  isthinc  49069
  Copyright terms: Public domain W3C validator