| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcied2 | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbcied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcied2 | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | sbcied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylan9eqr 2790 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 5 | sbcied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| 7 | 1, 6 | sbcied 3781 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: iscat 17582 sectffval 17661 issubc 17746 isfunc 17775 cat1 18008 ismgm 18553 issgrp 18632 isnsg 19071 isrng 20076 isring 20159 isdomn 20624 islbs 21014 isassa 21797 opsrval 21984 isuhgr 29042 isushgr 29043 isupgr 29066 isumgr 29077 isuspgr 29134 isusgr 29135 isgrim 48009 isthinc 49547 |
| Copyright terms: Public domain | W3C validator |