| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcn1 | Structured version Visualization version GIF version | ||
| Description: Move negation in and out of class substitution. One direction of sbcng 3786 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcn1 | ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3748 | . 2 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → 𝐴 ∈ V) | |
| 2 | sbcng 3786 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | mpcom 38 | 1 ⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 Vcvv 3438 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-sbc 3739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |