MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcn1 Structured version   Visualization version   GIF version

Theorem sbcn1 3792
Description: Move negation in and out of class substitution. One direction of sbcng 3787 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcn1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)

Proof of Theorem sbcn1
StepHypRef Expression
1 sbcex 3749 . 2 ([𝐴 / 𝑥] ¬ 𝜑𝐴 ∈ V)
2 sbcng 3787 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑))
32biimpd 229 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑))
41, 3mpcom 38 1 ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2110  Vcvv 3434  [wsbc 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-sbc 3740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator