![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbig | Structured version Visualization version GIF version |
Description: Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbcbig | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3807 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ↔ 𝜓))) | |
2 | dfsbcq2 3807 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | dfsbcq2 3807 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
5 | sbbi 2312 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
6 | 1, 4, 5 | vtoclbg 3569 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbcbi1 3866 sbcabel 3900 opsbc2ie 32504 bnj89 34697 bj-sbeq 36867 bj-sbceqgALT 36868 sbcbi 44510 sbc3orgVD 44822 sbcbiVD 44847 |
Copyright terms: Public domain | W3C validator |