![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbig | Structured version Visualization version GIF version |
Description: Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbcbig | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3780 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ↔ 𝜓))) | |
2 | dfsbcq2 3780 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | dfsbcq2 3780 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
5 | sbbi 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
6 | 1, 4, 5 | vtoclbg 3544 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 [wsb 2066 ∈ wcel 2105 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-sbc 3778 |
This theorem is referenced by: sbcbi1 3838 sbcabel 3872 opsbc2ie 32149 bnj89 34196 bj-sbeq 36245 bj-sbceqgALT 36246 sbcbi 43763 sbc3orgVD 44075 sbcbiVD 44100 |
Copyright terms: Public domain | W3C validator |