| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb1fw | Structured version Visualization version GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2119). Version of clelsb1f 2899 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Rodolfo Medina, 28-Apr-2010.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| clelsb1fw.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| clelsb1fw | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1fw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2886 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 3 | 2 | sbco2v 2332 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
| 4 | clelsb1 2858 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 5 | 4 | sbbii 2079 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 6 | clelsb1 2858 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 7 | 3, 5, 6 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: rmo3f 3688 suppss2f 32620 fmptdF 32638 disjdsct 32684 esumpfinvalf 34089 |
| Copyright terms: Public domain | W3C validator |