MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb1fw Structured version   Visualization version   GIF version

Theorem clelsb1fw 2908
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2113). Version of clelsb1f 2909 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Rodolfo Medina, 28-Apr-2010.) Avoid ax-13 2370. (Revised by Gino Giotto, 10-Jan-2024.)
Hypothesis
Ref Expression
clelsb1fw.1 𝑥𝐴
Assertion
Ref Expression
clelsb1fw ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem clelsb1fw
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 clelsb1fw.1 . . . 4 𝑥𝐴
21nfcri 2891 . . 3 𝑥 𝑤𝐴
32sbco2v 2326 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑤]𝑤𝐴)
4 clelsb1 2864 . . 3 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
54sbbii 2078 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
6 clelsb1 2864 . 2 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
73, 5, 63bitr3i 300 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2066  wcel 2105  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-10 2136  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-nf 1785  df-sb 2067  df-clel 2814  df-nfc 2886
This theorem is referenced by:  rmo3f  3678  suppss2f  31105  fmptdF  31124  disjdsct  31166  esumpfinvalf  32180
  Copyright terms: Public domain W3C validator