| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb1fw | Structured version Visualization version GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2117). Version of clelsb1f 2897 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Rodolfo Medina, 28-Apr-2010.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| clelsb1fw.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| clelsb1fw | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clelsb1fw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2884 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 3 | 2 | sbco2v 2330 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) |
| 4 | clelsb1 2856 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 5 | 4 | sbbii 2077 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 6 | clelsb1 2856 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 7 | 3, 5, 6 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clel 2804 df-nfc 2879 |
| This theorem is referenced by: rmo3f 3707 suppss2f 32568 fmptdF 32586 disjdsct 32632 esumpfinvalf 34072 |
| Copyright terms: Public domain | W3C validator |