Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrot5 Structured version   Visualization version   GIF version

Theorem sbcrot5 42090
Description: Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
sbcrot5 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
Distinct variable groups:   𝐴,𝑏   𝐴,𝑐   𝐵,𝑎   𝐶,𝑎   𝑎,𝑐   𝑎,𝑏   𝐴,𝑑   𝐴,𝑒   𝐷,𝑎   𝐸,𝑎   𝑒,𝑎   𝑎,𝑑
Allowed substitution hints:   𝜑(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑎)   𝐵(𝑒,𝑏,𝑐,𝑑)   𝐶(𝑒,𝑏,𝑐,𝑑)   𝐷(𝑒,𝑏,𝑐,𝑑)   𝐸(𝑒,𝑏,𝑐,𝑑)

Proof of Theorem sbcrot5
StepHypRef Expression
1 sbcrot3 42089 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑)
2 sbcrot3 42089 . . . 4 ([𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
32sbcbii 3832 . . 3 ([𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
43sbcbii 3832 . 2 ([𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
51, 4bitri 275 1 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-sbc 3773
This theorem is referenced by:  6rexfrabdioph  42097  7rexfrabdioph  42098
  Copyright terms: Public domain W3C validator