![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot5 | Structured version Visualization version GIF version |
Description: Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbcrot5 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcrot3 42242 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑) | |
2 | sbcrot3 42242 | . . . 4 ⊢ ([𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) | |
3 | 2 | sbcbii 3839 | . . 3 ⊢ ([𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
4 | 3 | sbcbii 3839 | . 2 ⊢ ([𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
5 | 1, 4 | bitri 274 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-sbc 3779 |
This theorem is referenced by: 6rexfrabdioph 42250 7rexfrabdioph 42251 |
Copyright terms: Public domain | W3C validator |