| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot5 | Structured version Visualization version GIF version | ||
| Description: Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| sbcrot5 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcrot3 42802 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑) | |
| 2 | sbcrot3 42802 | . . . 4 ⊢ ([𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) | |
| 3 | 2 | sbcbii 3846 | . . 3 ⊢ ([𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
| 4 | 3 | sbcbii 3846 | . 2 ⊢ ([𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsbc 3788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 |
| This theorem is referenced by: 6rexfrabdioph 42810 7rexfrabdioph 42811 |
| Copyright terms: Public domain | W3C validator |