Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcrot3 Structured version   Visualization version   GIF version

Theorem sbcrot3 42781
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
sbcrot3 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
Distinct variable groups:   𝐴,𝑏   𝐴,𝑐   𝐵,𝑎   𝐶,𝑎   𝑎,𝑐   𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑐)   𝐴(𝑎)   𝐵(𝑏,𝑐)   𝐶(𝑏,𝑐)

Proof of Theorem sbcrot3
StepHypRef Expression
1 sbccom 3851 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑)
2 sbccom 3851 . . 3 ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑[𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
32sbcbii 3827 . 2 ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
41, 3bitri 275 1 ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-sbc 3771
This theorem is referenced by:  sbcrot5  42782  2rexfrabdioph  42786  3rexfrabdioph  42787  4rexfrabdioph  42788  7rexfrabdioph  42790
  Copyright terms: Public domain W3C validator