Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot3 | Structured version Visualization version GIF version |
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbcrot3 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 3800 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑) | |
2 | sbccom 3800 | . . 3 ⊢ ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | |
3 | 2 | sbcbii 3772 | . 2 ⊢ ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
4 | 1, 3 | bitri 274 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 |
This theorem is referenced by: sbcrot5 40530 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 7rexfrabdioph 40538 |
Copyright terms: Public domain | W3C validator |