![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot3 | Structured version Visualization version GIF version |
Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbcrot3 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 3865 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑) | |
2 | sbccom 3865 | . . 3 ⊢ ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | |
3 | 2 | sbcbii 3837 | . 2 ⊢ ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
4 | 1, 3 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-sbc 3778 |
This theorem is referenced by: sbcrot5 41996 2rexfrabdioph 42000 3rexfrabdioph 42001 4rexfrabdioph 42002 7rexfrabdioph 42004 |
Copyright terms: Public domain | W3C validator |