|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcrot3 | Structured version Visualization version GIF version | ||
| Description: Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| sbcrot3 | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbccom 3870 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑) | |
| 2 | sbccom 3870 | . . 3 ⊢ ([𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | |
| 3 | 2 | sbcbii 3845 | . 2 ⊢ ([𝐵 / 𝑏][𝐴 / 𝑎][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsbc 3787 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-sbc 3788 | 
| This theorem is referenced by: sbcrot5 42808 2rexfrabdioph 42812 3rexfrabdioph 42813 4rexfrabdioph 42814 7rexfrabdioph 42816 | 
| Copyright terms: Public domain | W3C validator |