Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6rexfrabdioph Structured version   Visualization version   GIF version

Theorem 6rexfrabdioph 40276
Description: Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
rexfrabdioph.5 𝐼 = (𝐽 + 1)
rexfrabdioph.6 𝐻 = (𝐼 + 1)
Assertion
Ref Expression
6rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝐻   𝑡,𝐼,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐽,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑝)

Proof of Theorem 6rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc4rex 40266 . . . . . . . 8 ([(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
21sbcbii 3747 . . . . . . 7 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
3 sbc4rex 40266 . . . . . . 7 ([(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
42, 3bitri 278 . . . . . 6 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
54sbcbii 3747 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
6 sbc4rex 40266 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
75, 6bitri 278 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
87rabbii 3376 . . 3 {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑}
9 rexfrabdioph.2 . . . . . . 7 𝐿 = (𝑀 + 1)
10 rexfrabdioph.1 . . . . . . . . 9 𝑀 = (𝑁 + 1)
11 nn0p1nn 12112 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1210, 11eqeltrid 2838 . . . . . . . 8 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1312peano2nnd 11830 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
149, 13eqeltrid 2838 . . . . . 6 (𝑁 ∈ ℕ0𝐿 ∈ ℕ)
1514nnnn0d 12133 . . . . 5 (𝑁 ∈ ℕ0𝐿 ∈ ℕ0)
1615adantr 484 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → 𝐿 ∈ ℕ0)
17 sbcrot5 40269 . . . . . . . . . . . . 13 ([(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
1817sbcbii 3747 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
19 sbcrot5 40269 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2018, 19bitri 278 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2120sbcbii 3747 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
22 sbcrot5 40269 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2321, 22bitri 278 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2423sbcbii 3747 . . . . . . . 8 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
25 reseq1 5834 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)))
2625sbccomieg 40270 . . . . . . . . 9 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
27 fzssp1 13138 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (1...(𝑁 + 1))
2810oveq2i 7213 . . . . . . . . . . . . 13 (1...𝑀) = (1...(𝑁 + 1))
2927, 28sseqtrri 3928 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...𝑀)
30 fzssp1 13138 . . . . . . . . . . . . 13 (1...𝑀) ⊆ (1...(𝑀 + 1))
319oveq2i 7213 . . . . . . . . . . . . 13 (1...𝐿) = (1...(𝑀 + 1))
3230, 31sseqtrri 3928 . . . . . . . . . . . 12 (1...𝑀) ⊆ (1...𝐿)
3329, 32sstri 3900 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝐿)
34 resabs1 5870 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
35 dfsbcq 3689 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
3633, 34, 35mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
37 fveq1 6705 . . . . . . . . . . . . 13 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀))
3837sbccomieg 40270 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
39 elfz1end 13125 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4012, 39sylib 221 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
4132, 40sseldi 3889 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝐿))
42 fvres 6725 . . . . . . . . . . . . . 14 (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀))
43 dfsbcq 3689 . . . . . . . . . . . . . 14 (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
4441, 42, 433syl 18 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
45 vex 3405 . . . . . . . . . . . . . . . . 17 𝑡 ∈ V
4645resex 5888 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (1...𝐿)) ∈ V
47 fveq1 6705 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿))
4847sbcco3gw 4327 . . . . . . . . . . . . . . . 16 ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
4946, 48ax-mp 5 . . . . . . . . . . . . . . 15 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
50 elfz1end 13125 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿))
5114, 50sylib 221 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿 ∈ (1...𝐿))
52 fvres 6725 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿))
53 dfsbcq 3689 . . . . . . . . . . . . . . . 16 (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5451, 52, 533syl 18 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5549, 54syl5bb 286 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5655sbcbidv 3745 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5744, 56bitrd 282 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5838, 57syl5bb 286 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5958sbcbidv 3745 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6036, 59syl5bb 286 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6126, 60syl5bb 286 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6224, 61bitr3id 288 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6362rabbidv 3383 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑})
6463eleq1d 2818 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻) ↔ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)))
6564biimpar 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻))
66 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
67 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
68 rexfrabdioph.5 . . . . 5 𝐼 = (𝐽 + 1)
69 rexfrabdioph.6 . . . . 5 𝐻 = (𝐼 + 1)
7066, 67, 68, 694rexfrabdioph 40275 . . . 4 ((𝐿 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
7116, 65, 70syl2anc 587 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
728, 71eqeltrid 2838 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿))
7310, 92rexfrabdioph 40273 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
7472, 73syldan 594 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3055  {crab 3058  Vcvv 3401  [wsbc 3687  wss 3857  cres 5542  cfv 6369  (class class class)co 7202  m cmap 8497  1c1 10713   + caddc 10715  cn 11813  0cn0 12073  ...cfz 13078  Diophcdioph 40232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-hash 13880  df-mzpcl 40200  df-mzp 40201  df-dioph 40233
This theorem is referenced by:  7rexfrabdioph  40277
  Copyright terms: Public domain W3C validator