Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6rexfrabdioph Structured version   Visualization version   GIF version

Theorem 6rexfrabdioph 42760
Description: Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
rexfrabdioph.5 𝐼 = (𝐽 + 1)
rexfrabdioph.6 𝐻 = (𝐼 + 1)
Assertion
Ref Expression
6rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝐻   𝑡,𝐼,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐽,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑝)

Proof of Theorem 6rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc4rex 42750 . . . . . . . 8 ([(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
21sbcbii 3807 . . . . . . 7 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
3 sbc4rex 42750 . . . . . . 7 ([(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
42, 3bitri 275 . . . . . 6 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
54sbcbii 3807 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
6 sbc4rex 42750 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
75, 6bitri 275 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
87rabbii 3408 . . 3 {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑}
9 rexfrabdioph.2 . . . . . . 7 𝐿 = (𝑀 + 1)
10 rexfrabdioph.1 . . . . . . . . 9 𝑀 = (𝑁 + 1)
11 nn0p1nn 12457 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1210, 11eqeltrid 2832 . . . . . . . 8 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1312peano2nnd 12179 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
149, 13eqeltrid 2832 . . . . . 6 (𝑁 ∈ ℕ0𝐿 ∈ ℕ)
1514nnnn0d 12479 . . . . 5 (𝑁 ∈ ℕ0𝐿 ∈ ℕ0)
1615adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → 𝐿 ∈ ℕ0)
17 sbcrot5 42753 . . . . . . . . . . . . 13 ([(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
1817sbcbii 3807 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
19 sbcrot5 42753 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2018, 19bitri 275 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2120sbcbii 3807 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
22 sbcrot5 42753 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2321, 22bitri 275 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2423sbcbii 3807 . . . . . . . 8 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
25 reseq1 5933 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)))
2625sbccomieg 42754 . . . . . . . . 9 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
27 fzssp1 13504 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (1...(𝑁 + 1))
2810oveq2i 7380 . . . . . . . . . . . . 13 (1...𝑀) = (1...(𝑁 + 1))
2927, 28sseqtrri 3993 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...𝑀)
30 fzssp1 13504 . . . . . . . . . . . . 13 (1...𝑀) ⊆ (1...(𝑀 + 1))
319oveq2i 7380 . . . . . . . . . . . . 13 (1...𝐿) = (1...(𝑀 + 1))
3230, 31sseqtrri 3993 . . . . . . . . . . . 12 (1...𝑀) ⊆ (1...𝐿)
3329, 32sstri 3953 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝐿)
34 resabs1 5966 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
35 dfsbcq 3752 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
3633, 34, 35mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
37 fveq1 6839 . . . . . . . . . . . . 13 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀))
3837sbccomieg 42754 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
39 elfz1end 13491 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4012, 39sylib 218 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
4132, 40sselid 3941 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝐿))
42 fvres 6859 . . . . . . . . . . . . . 14 (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀))
43 dfsbcq 3752 . . . . . . . . . . . . . 14 (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
4441, 42, 433syl 18 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
45 vex 3448 . . . . . . . . . . . . . . . . 17 𝑡 ∈ V
4645resex 5989 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (1...𝐿)) ∈ V
47 fveq1 6839 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿))
4847sbcco3gw 4384 . . . . . . . . . . . . . . . 16 ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
4946, 48ax-mp 5 . . . . . . . . . . . . . . 15 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
50 elfz1end 13491 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿))
5114, 50sylib 218 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿 ∈ (1...𝐿))
52 fvres 6859 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿))
53 dfsbcq 3752 . . . . . . . . . . . . . . . 16 (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5451, 52, 533syl 18 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5549, 54bitrid 283 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5655sbcbidv 3806 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5744, 56bitrd 279 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5838, 57bitrid 283 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5958sbcbidv 3806 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6036, 59bitrid 283 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6126, 60bitrid 283 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6224, 61bitr3id 285 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6362rabbidv 3410 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑})
6463eleq1d 2813 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻) ↔ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)))
6564biimpar 477 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻))
66 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
67 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
68 rexfrabdioph.5 . . . . 5 𝐼 = (𝐽 + 1)
69 rexfrabdioph.6 . . . . 5 𝐻 = (𝐼 + 1)
7066, 67, 68, 694rexfrabdioph 42759 . . . 4 ((𝐿 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
7116, 65, 70syl2anc 584 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
728, 71eqeltrid 2832 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿))
7310, 92rexfrabdioph 42757 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
7472, 73syldan 591 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  [wsbc 3750  wss 3911  cres 5633  cfv 6499  (class class class)co 7369  m cmap 8776  1c1 11045   + caddc 11047  cn 12162  0cn0 12418  ...cfz 13444  Diophcdioph 42716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-mzpcl 42684  df-mzp 42685  df-dioph 42717
This theorem is referenced by:  7rexfrabdioph  42761
  Copyright terms: Public domain W3C validator