![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbccomieg | Structured version Visualization version GIF version |
Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbccomieg.1 | ⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sbccomieg | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3787 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 → 𝐴 ∈ V) | |
2 | spesbc 3876 | . . 3 ⊢ ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑 → ∃𝑏[𝐴 / 𝑎]𝜑) | |
3 | sbcex 3787 | . . . 4 ⊢ ([𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1932 | . . 3 ⊢ (∃𝑏[𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . 2 ⊢ ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) |
6 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑎𝐶 | |
7 | nfsbc1v 3797 | . . . 4 ⊢ Ⅎ𝑎[𝐴 / 𝑎]𝜑 | |
8 | 6, 7 | nfsbcw 3799 | . . 3 ⊢ Ⅎ𝑎[𝐶 / 𝑏][𝐴 / 𝑎]𝜑 |
9 | sbccomieg.1 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) | |
10 | sbceq1a 3788 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑎]𝜑)) | |
11 | 9, 10 | sbceqbid 3784 | . . 3 ⊢ (𝑎 = 𝐴 → ([𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑)) |
12 | 8, 11 | sbciegf 3816 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑)) |
13 | 1, 5, 12 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-sbc 3778 |
This theorem is referenced by: 2rexfrabdioph 41837 3rexfrabdioph 41838 4rexfrabdioph 41839 6rexfrabdioph 41840 7rexfrabdioph 41841 |
Copyright terms: Public domain | W3C validator |