Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbccomieg | Structured version Visualization version GIF version |
Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
sbccomieg.1 | ⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sbccomieg | ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3721 | . 2 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 → 𝐴 ∈ V) | |
2 | spesbc 3811 | . . 3 ⊢ ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑 → ∃𝑏[𝐴 / 𝑎]𝜑) | |
3 | sbcex 3721 | . . . 4 ⊢ ([𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) | |
4 | 3 | exlimiv 1934 | . . 3 ⊢ (∃𝑏[𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . 2 ⊢ ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑 → 𝐴 ∈ V) |
6 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑎𝐶 | |
7 | nfsbc1v 3731 | . . . 4 ⊢ Ⅎ𝑎[𝐴 / 𝑎]𝜑 | |
8 | 6, 7 | nfsbcw 3733 | . . 3 ⊢ Ⅎ𝑎[𝐶 / 𝑏][𝐴 / 𝑎]𝜑 |
9 | sbccomieg.1 | . . . 4 ⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) | |
10 | sbceq1a 3722 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑎]𝜑)) | |
11 | 9, 10 | sbceqbid 3718 | . . 3 ⊢ (𝑎 = 𝐴 → ([𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑)) |
12 | 8, 11 | sbciegf 3750 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑)) |
13 | 1, 5, 12 | pm5.21nii 379 | 1 ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-sbc 3712 |
This theorem is referenced by: 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 |
Copyright terms: Public domain | W3C validator |