Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccomieg Structured version   Visualization version   GIF version

Theorem sbccomieg 42804
Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
sbccomieg.1 (𝑎 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
sbccomieg ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑[𝐶 / 𝑏][𝐴 / 𝑎]𝜑)
Distinct variable groups:   𝐴,𝑎,𝑏   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑏)

Proof of Theorem sbccomieg
StepHypRef Expression
1 sbcex 3798 . 2 ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑𝐴 ∈ V)
2 spesbc 3882 . . 3 ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑 → ∃𝑏[𝐴 / 𝑎]𝜑)
3 sbcex 3798 . . . 4 ([𝐴 / 𝑎]𝜑𝐴 ∈ V)
43exlimiv 1930 . . 3 (∃𝑏[𝐴 / 𝑎]𝜑𝐴 ∈ V)
52, 4syl 17 . 2 ([𝐶 / 𝑏][𝐴 / 𝑎]𝜑𝐴 ∈ V)
6 nfcv 2905 . . . 4 𝑎𝐶
7 nfsbc1v 3808 . . . 4 𝑎[𝐴 / 𝑎]𝜑
86, 7nfsbcw 3810 . . 3 𝑎[𝐶 / 𝑏][𝐴 / 𝑎]𝜑
9 sbccomieg.1 . . . 4 (𝑎 = 𝐴𝐵 = 𝐶)
10 sbceq1a 3799 . . . 4 (𝑎 = 𝐴 → (𝜑[𝐴 / 𝑎]𝜑))
119, 10sbceqbid 3795 . . 3 (𝑎 = 𝐴 → ([𝐵 / 𝑏]𝜑[𝐶 / 𝑏][𝐴 / 𝑎]𝜑))
128, 11sbciegf 3827 . 2 (𝐴 ∈ V → ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑[𝐶 / 𝑏][𝐴 / 𝑎]𝜑))
131, 5, 12pm5.21nii 378 1 ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑[𝐶 / 𝑏][𝐴 / 𝑎]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480  [wsbc 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3482  df-sbc 3789
This theorem is referenced by:  2rexfrabdioph  42807  3rexfrabdioph  42808  4rexfrabdioph  42809  6rexfrabdioph  42810  7rexfrabdioph  42811
  Copyright terms: Public domain W3C validator