Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcth2 | Structured version Visualization version GIF version |
Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcth2.1 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
sbcth2 | ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth2.1 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
3 | rspsbc 3807 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ∀wral 3063 [wsbc 3710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ral 3068 df-sbc 3711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |