| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcth2 | Structured version Visualization version GIF version | ||
| Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcth2.1 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| sbcth2 | ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth2.1 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 2 | 1 | rgen 3054 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
| 3 | rspsbc 3859 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3052 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-sbc 3771 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |