MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spesbcd Structured version   Visualization version   GIF version

Theorem spesbcd 3892
Description: form of spsbc 3804. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
spesbcd (𝜑 → ∃𝑥𝜓)

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 spesbc 3891 . 2 ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-sbc 3792
This theorem is referenced by:  euotd  5523  ex-natded9.26  30448  bnj1465  34838  spesbcdi  38107  iscard4  43523  minregex  43524  brtrclfv2  43717  cotrclrcl  43732  rspesbcd  44936
  Copyright terms: Public domain W3C validator