| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbcd | Structured version Visualization version GIF version | ||
| Description: form of spsbc 3750. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| spesbcd.1 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Ref | Expression |
|---|---|
| spesbcd | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spesbcd.1 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
| 2 | spesbc 3829 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-sbc 3738 |
| This theorem is referenced by: euotd 5456 ex-natded9.26 30401 bnj1465 34878 spesbcdi 38180 iscard4 43650 minregex 43651 brtrclfv2 43844 cotrclrcl 43859 rspesbcd 45054 |
| Copyright terms: Public domain | W3C validator |