MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spesbcd Structured version   Visualization version   GIF version

Theorem spesbcd 3830
Description: form of spsbc 3750. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
spesbcd (𝜑 → ∃𝑥𝜓)

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 spesbc 3829 . 2 ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-sbc 3738
This theorem is referenced by:  euotd  5456  ex-natded9.26  30401  bnj1465  34878  spesbcdi  38180  iscard4  43650  minregex  43651  brtrclfv2  43844  cotrclrcl  43859  rspesbcd  45054
  Copyright terms: Public domain W3C validator