Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spesbcd | Structured version Visualization version GIF version |
Description: form of spsbc 3729. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spesbcd.1 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
spesbcd | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcd.1 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | spesbc 3815 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-sbc 3717 |
This theorem is referenced by: euotd 5427 ex-natded9.26 28783 bnj1465 32825 spesbcdi 36278 iscard4 41140 minregex 41141 brtrclfv2 41335 cotrclrcl 41350 |
Copyright terms: Public domain | W3C validator |