MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spesbcd Structured version   Visualization version   GIF version

Theorem spesbcd 3816
Description: form of spsbc 3729. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1 (𝜑[𝐴 / 𝑥]𝜓)
Assertion
Ref Expression
spesbcd (𝜑 → ∃𝑥𝜓)

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2 (𝜑[𝐴 / 𝑥]𝜓)
2 spesbc 3815 . 2 ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-sbc 3717
This theorem is referenced by:  euotd  5427  ex-natded9.26  28783  bnj1465  32825  spesbcdi  36278  iscard4  41140  minregex  41141  brtrclfv2  41335  cotrclrcl  41350
  Copyright terms: Public domain W3C validator