| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spesbcd | Structured version Visualization version GIF version | ||
| Description: form of spsbc 3778. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| spesbcd.1 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| Ref | Expression |
|---|---|
| spesbcd | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spesbcd.1 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
| 2 | spesbc 3857 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-sbc 3766 |
| This theorem is referenced by: euotd 5488 ex-natded9.26 30400 bnj1465 34876 spesbcdi 38144 iscard4 43557 minregex 43558 brtrclfv2 43751 cotrclrcl 43766 rspesbcd 44962 |
| Copyright terms: Public domain | W3C validator |