![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspsbc | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2064 and spsbc 3788. See also rspsbca 3871 and rspcsbela 4432. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspsbc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsvw 3310 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
2 | dfsbcq2 3778 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | rspcv 3604 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | biimtrid 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2060 ∈ wcel 2099 ∀wral 3057 [wsbc 3775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-sbc 3776 |
This theorem is referenced by: rspsbca 3871 sbcth2 3875 rspcsbela 4432 riota5f 7400 riotass2 7402 fzrevral 13613 fprodcllemf 15929 rspcsbnea 41597 rspsbc2 43964 truniALT 43971 rspsbc2VD 44285 truniALTVD 44308 trintALTVD 44310 trintALT 44311 |
Copyright terms: Public domain | W3C validator |