Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbc Structured version   Visualization version   GIF version

Theorem rspsbc 3866
 Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2066 and spsbc 3789. See also rspsbca 3867 and rspcsbela 4391. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3473 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑦 / 𝑥]𝜑)
2 dfsbcq2 3779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32rspcv 3622 . 2 (𝐴𝐵 → (∀𝑦𝐵 [𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
41, 3syl5bi 243 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  [wsb 2062   ∈ wcel 2107  ∀wral 3143  [wsbc 3776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-sbc 3777 This theorem is referenced by:  rspsbca  3867  sbcth2  3871  rspcsbela  4391  riota5f  7136  riotass2  7138  fzrevral  12987  fprodcllemf  15307  rspsbc2  40752  truniALT  40759  rspsbc2VD  41073  truniALTVD  41096  trintALTVD  41098  trintALT  41099
 Copyright terms: Public domain W3C validator