MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbc Structured version   Visualization version   GIF version

Theorem rspsbc 3845
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2069 and spsbc 3769. See also rspsbca 3846 and rspcsbela 4404. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3292 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑦 / 𝑥]𝜑)
2 dfsbcq2 3759 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32rspcv 3587 . 2 (𝐴𝐵 → (∀𝑦𝐵 [𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
41, 3biimtrid 242 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065  wcel 2109  wral 3045  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-sbc 3757
This theorem is referenced by:  rspsbca  3846  sbcth2  3850  rspcsbela  4404  riota5f  7375  riotass2  7377  fzrevral  13580  fprodcllemf  15931  rspcsbnea  42126  rspsbc2  44531  truniALT  44538  rspsbc2VD  44851  truniALTVD  44874  trintALTVD  44876  trintALT  44877
  Copyright terms: Public domain W3C validator