| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspsbc | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2073 and spsbc 3750. See also rspsbca 3827 and rspcsbela 4387. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspsbc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsvw 3284 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
| 2 | dfsbcq2 3740 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | rspcv 3569 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 ∈ wcel 2113 ∀wral 3048 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-sbc 3738 |
| This theorem is referenced by: rspsbca 3827 sbcth2 3831 rspcsbela 4387 riota5f 7337 riotass2 7339 fzrevral 13514 fprodcllemf 15867 rspcsbnea 42244 rspsbc2 44651 truniALT 44658 rspsbc2VD 44971 truniALTVD 44994 trintALTVD 44996 trintALT 44997 |
| Copyright terms: Public domain | W3C validator |