MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbc Structured version   Visualization version   GIF version

Theorem rspsbc 3830
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2071 and spsbc 3754. See also rspsbca 3831 and rspcsbela 4388. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3283 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑦 / 𝑥]𝜑)
2 dfsbcq2 3744 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32rspcv 3573 . 2 (𝐴𝐵 → (∀𝑦𝐵 [𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
41, 3biimtrid 242 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067  wcel 2111  wral 3047  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-sbc 3742
This theorem is referenced by:  rspsbca  3831  sbcth2  3835  rspcsbela  4388  riota5f  7331  riotass2  7333  fzrevral  13509  fprodcllemf  15862  rspcsbnea  42163  rspsbc2  44566  truniALT  44573  rspsbc2VD  44886  truniALTVD  44909  trintALTVD  44911  trintALT  44912
  Copyright terms: Public domain W3C validator