| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspsbc | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2067 and spsbc 3800. See also rspsbca 3879 and rspcsbela 4437. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspsbc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsvw 3316 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
| 2 | dfsbcq2 3790 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | rspcv 3617 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2063 ∈ wcel 2107 ∀wral 3060 [wsbc 3787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-sbc 3788 |
| This theorem is referenced by: rspsbca 3879 sbcth2 3883 rspcsbela 4437 riota5f 7417 riotass2 7419 fzrevral 13653 fprodcllemf 15995 rspcsbnea 42133 rspsbc2 44559 truniALT 44566 rspsbc2VD 44880 truniALTVD 44903 trintALTVD 44905 trintALT 44906 |
| Copyright terms: Public domain | W3C validator |