| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspsbc | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2069 and spsbc 3769. See also rspsbca 3846 and rspcsbela 4404. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspsbc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsvw 3292 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
| 2 | dfsbcq2 3759 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | rspcv 3587 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2065 ∈ wcel 2109 ∀wral 3045 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-sbc 3757 |
| This theorem is referenced by: rspsbca 3846 sbcth2 3850 rspcsbela 4404 riota5f 7375 riotass2 7377 fzrevral 13580 fprodcllemf 15931 rspcsbnea 42126 rspsbc2 44531 truniALT 44538 rspsbc2VD 44851 truniALTVD 44874 trintALTVD 44876 trintALT 44877 |
| Copyright terms: Public domain | W3C validator |