Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sb5rf | Structured version Visualization version GIF version |
Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2sb5rf.1 | ⊢ Ⅎ𝑧𝜑 |
2sb5rf.2 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
2sb5rf | ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sb5rf.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | 19.41 2228 | . . 3 ⊢ (∃𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
3 | 2sb5rf.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
4 | 3 | 19.41 2228 | . . . 4 ⊢ (∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ (∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
5 | 4 | exbii 1850 | . . 3 ⊢ (∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
6 | 2ax6e 2471 | . . . 4 ⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | |
7 | 6 | biantrur 531 | . . 3 ⊢ (𝜑 ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
8 | 2, 5, 7 | 3bitr4ri 304 | . 2 ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
9 | sbequ12r 2245 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
10 | sbequ12r 2245 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜑 ↔ 𝜑)) | |
11 | 9, 10 | sylan9bb 510 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜑)) |
12 | 11 | pm5.32i 575 | . . 3 ⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
13 | 12 | 2exbii 1851 | . 2 ⊢ (∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ 𝜑)) |
14 | 8, 13 | bitr4i 277 | 1 ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: sbel2x 2474 |
Copyright terms: Public domain | W3C validator |