|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sb6rf | Structured version Visualization version GIF version | ||
| Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 13-Apr-2023.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2sb5rf.1 | ⊢ Ⅎ𝑧𝜑 | 
| 2sb5rf.2 | ⊢ Ⅎ𝑤𝜑 | 
| Ref | Expression | 
|---|---|
| 2sb6rf | ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2sb5rf.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | 19.23 2211 | . . 3 ⊢ (∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 3 | 2sb5rf.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 4 | 3 | 19.23 2211 | . . . 4 ⊢ (∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 5 | 4 | albii 1819 | . . 3 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 6 | 2ax6e 2476 | . . . 4 ⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | |
| 7 | 6 | a1bi 362 | . . 3 ⊢ (𝜑 ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 8 | 2, 5, 7 | 3bitr4ri 304 | . 2 ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 9 | sbequ12r 2252 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
| 10 | sbequ12r 2252 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜑 ↔ 𝜑)) | |
| 11 | 9, 10 | sylan9bb 509 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜑)) | 
| 12 | 11 | pm5.74i 271 | . . 3 ⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 13 | 12 | 2albii 1820 | . 2 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) | 
| 14 | 8, 13 | bitr4i 278 | 1 ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |