Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sb6rf | Structured version Visualization version GIF version |
Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 13-Apr-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2sb5rf.1 | ⊢ Ⅎ𝑧𝜑 |
2sb5rf.2 | ⊢ Ⅎ𝑤𝜑 |
Ref | Expression |
---|---|
2sb6rf | ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sb5rf.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | 19.23 2207 | . . 3 ⊢ (∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
3 | 2sb5rf.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
4 | 3 | 19.23 2207 | . . . 4 ⊢ (∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ (∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
5 | 4 | albii 1823 | . . 3 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧(∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
6 | 2ax6e 2471 | . . . 4 ⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | |
7 | 6 | a1bi 362 | . . 3 ⊢ (𝜑 ↔ (∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
8 | 2, 5, 7 | 3bitr4ri 303 | . 2 ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
9 | sbequ12r 2248 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
10 | sbequ12r 2248 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑦]𝜑 ↔ 𝜑)) | |
11 | 9, 10 | sylan9bb 509 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜑)) |
12 | 11 | pm5.74i 270 | . . 3 ⊢ (((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
13 | 12 | 2albii 1824 | . 2 ⊢ (∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → 𝜑)) |
14 | 8, 13 | bitr4i 277 | 1 ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |