![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotavalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of iotaval 6515 as of 23-Dec-2024. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotavalOLD | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6497 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
2 | sbeqalb 3846 | . . . . . . . 8 ⊢ (𝑦 ∈ V → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → 𝑦 = 𝑧)) | |
3 | 2 | elv 3481 | . . . . . . 7 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) → 𝑦 = 𝑧) |
4 | 3 | ex 414 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → 𝑦 = 𝑧)) |
5 | equequ2 2030 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
6 | 5 | bibi2d 343 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
7 | 6 | biimpd 228 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 ↔ 𝑥 = 𝑧))) |
8 | 7 | alimdv 1920 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
9 | 8 | com12 32 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝑦 = 𝑧 → ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
10 | 4, 9 | impbid 211 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑦 = 𝑧)) |
11 | equcom 2022 | . . . . 5 ⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) | |
12 | 10, 11 | bitrdi 287 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦)) |
13 | 12 | alrimiv 1931 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦)) |
14 | uniabio 6511 | . . 3 ⊢ (∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ 𝑧 = 𝑦) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = 𝑦) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} = 𝑦) |
16 | 1, 15 | eqtrid 2785 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 {cab 2710 Vcvv 3475 ∪ cuni 4909 ℩cio 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |