MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbievg Structured version   Visualization version   GIF version

Theorem sbievg 2361
Description: Substitution applied to expressions linked by implicit substitution. The proof was part of a former cbvabw 2813 version. (Contributed by GG and WL, 26-Oct-2024.)
Hypotheses
Ref Expression
sbievg.1 𝑦𝜑
sbievg.2 𝑥𝜓
sbievg.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbievg ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem sbievg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑦 𝑥 = 𝑤
2 sbievg.1 . . . . . 6 𝑦𝜑
31, 2nfim 1900 . . . . 5 𝑦(𝑥 = 𝑤𝜑)
4 nfv 1918 . . . . . 6 𝑥 𝑦 = 𝑤
5 sbievg.2 . . . . . 6 𝑥𝜓
64, 5nfim 1900 . . . . 5 𝑥(𝑦 = 𝑤𝜓)
7 equequ1 2029 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑤𝑦 = 𝑤))
8 sbievg.3 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥 = 𝑤𝜑) ↔ (𝑦 = 𝑤𝜓)))
103, 6, 9cbvalv1 2340 . . . 4 (∀𝑥(𝑥 = 𝑤𝜑) ↔ ∀𝑦(𝑦 = 𝑤𝜓))
1110imbi2i 335 . . 3 ((𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤𝜑)) ↔ (𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜓)))
1211albii 1823 . 2 (∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤𝜑)) ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜓)))
13 df-sb 2069 . 2 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤𝜑)))
14 df-sb 2069 . 2 ([𝑧 / 𝑦]𝜓 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜓)))
1512, 13, 143bitr4i 302 1 ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  cbvabw  2813
  Copyright terms: Public domain W3C validator