Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbievg | Structured version Visualization version GIF version |
Description: Substitution applied to expressions linked by implicit substitution. The proof was part of a former cbvabw 2813 version. (Contributed by GG and WL, 26-Oct-2024.) |
Ref | Expression |
---|---|
sbievg.1 | ⊢ Ⅎ𝑦𝜑 |
sbievg.2 | ⊢ Ⅎ𝑥𝜓 |
sbievg.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbievg | ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 = 𝑤 | |
2 | sbievg.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
3 | 1, 2 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 = 𝑤 → 𝜑) |
4 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑤 | |
5 | sbievg.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
6 | 4, 5 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 = 𝑤 → 𝜓) |
7 | equequ1 2029 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑦 = 𝑤)) | |
8 | sbievg.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝑤 → 𝜑) ↔ (𝑦 = 𝑤 → 𝜓))) |
10 | 3, 6, 9 | cbvalv1 2340 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑤 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑤 → 𝜓)) |
11 | 10 | imbi2i 335 | . . 3 ⊢ ((𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ (𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) |
12 | 11 | albii 1823 | . 2 ⊢ (∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) |
13 | df-sb 2069 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) | |
14 | df-sb 2069 | . 2 ⊢ ([𝑧 / 𝑦]𝜓 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) | |
15 | 12, 13, 14 | 3bitr4i 302 | 1 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: cbvabw 2813 |
Copyright terms: Public domain | W3C validator |