Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2d Structured version   Visualization version   GIF version

Theorem sbco2d 2532
 Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbco2d.1 𝑥𝜑
sbco2d.2 𝑧𝜑
sbco2d.3 (𝜑 → Ⅎ𝑧𝜓)
Assertion
Ref Expression
sbco2d (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbco2d
StepHypRef Expression
1 sbco2d.2 . . . . 5 𝑧𝜑
2 sbco2d.3 . . . . 5 (𝜑 → Ⅎ𝑧𝜓)
31, 2nfim1 2198 . . . 4 𝑧(𝜑𝜓)
43sbco2 2531 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥](𝜑𝜓))
5 sbco2d.1 . . . . . 6 𝑥𝜑
65sbrim 2310 . . . . 5 ([𝑧 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑧 / 𝑥]𝜓))
76sbbii 2082 . . . 4 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓))
81sbrim 2310 . . . 4 ([𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
97, 8bitri 278 . . 3 ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓))
105sbrim 2310 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
114, 9, 103bitr3i 305 . 2 ((𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
1211pm5.74ri 275 1 (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  Ⅎwnf 1786  [wsb 2070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2380 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071 This theorem is referenced by:  sbco3  2533  wl-clelsb3df  35309
 Copyright terms: Public domain W3C validator