Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbco2d | Structured version Visualization version GIF version |
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbco2d.1 | ⊢ Ⅎ𝑥𝜑 |
sbco2d.2 | ⊢ Ⅎ𝑧𝜑 |
sbco2d.3 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
Ref | Expression |
---|---|
sbco2d | ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2d.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
2 | sbco2d.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
3 | 1, 2 | nfim1 2198 | . . . 4 ⊢ Ⅎ𝑧(𝜑 → 𝜓) |
4 | 3 | sbco2 2531 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
5 | sbco2d.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 5 | sbrim 2310 | . . . . 5 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑧 / 𝑥]𝜓)) |
7 | 6 | sbbii 2082 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓)) |
8 | 1 | sbrim 2310 | . . . 4 ⊢ ([𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
9 | 7, 8 | bitri 278 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
10 | 5 | sbrim 2310 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
11 | 4, 9, 10 | 3bitr3i 305 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
12 | 11 | pm5.74ri 275 | 1 ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 Ⅎwnf 1786 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-11 2159 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: sbco3 2533 wl-clelsb3df 35309 |
Copyright terms: Public domain | W3C validator |