| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbco2d | Structured version Visualization version GIF version | ||
| Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbco2d.1 | ⊢ Ⅎ𝑥𝜑 |
| sbco2d.2 | ⊢ Ⅎ𝑧𝜑 |
| sbco2d.3 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| sbco2d | ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.2 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 2 | sbco2d.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 3 | 1, 2 | nfim1 2200 | . . . 4 ⊢ Ⅎ𝑧(𝜑 → 𝜓) |
| 4 | 3 | sbco2 2516 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
| 5 | sbco2d.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 5 | sbrim 2305 | . . . . 5 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑧 / 𝑥]𝜓)) |
| 7 | 6 | sbbii 2077 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓)) |
| 8 | 1 | sbrim 2305 | . . . 4 ⊢ ([𝑦 / 𝑧](𝜑 → [𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
| 10 | 5 | sbrim 2305 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 11 | 4, 9, 10 | 3bitr3i 301 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
| 12 | 11 | pm5.74ri 272 | 1 ⊢ (𝜑 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbco3 2518 |
| Copyright terms: Public domain | W3C validator |