![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mos | Structured version Visualization version GIF version |
Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005.) (Proof shortened by Wolf Lammen, 21-May-2025.) |
Ref | Expression |
---|---|
2mos.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
2mos | ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2mo 2637 | . 2 ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
2 | 2mos.1 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
3 | 2 | 2sbievw 2090 | . . . . . 6 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜓) |
4 | 3 | anbi2i 621 | . . . . 5 ⊢ ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (𝜑 ∧ 𝜓)) |
5 | 4 | imbi1i 348 | . . . 4 ⊢ (((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
6 | 5 | 2albii 1815 | . . 3 ⊢ (∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
7 | 6 | 2albii 1815 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
8 | 1, 7 | bitri 274 | 1 ⊢ (∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 ∃wex 1774 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |